A binary dandelion algorithm using seeding and chaos population strategies for feature selection

Feature selection (FS) is an important pre-processing step in data mining and pattern recognition. It can effectively compress the dimensionality of the feature space to reduce computation time and improve classification performance. The meta-heuristic algorithm-based feature selection method by fin...

Full description

Saved in:
Bibliographic Details
Published in:Applied soft computing Vol. 125; p. 109166
Main Authors: Zhao, Yuxin, Dong, Junwei, Li, Xiaobo, Chen, Hui, Li, Shaolang
Format: Journal Article
Language:English
Published: Elsevier B.V 01.08.2022
Subjects:
ISSN:1568-4946, 1872-9681
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Feature selection (FS) is an important pre-processing step in data mining and pattern recognition. It can effectively compress the dimensionality of the feature space to reduce computation time and improve classification performance. The meta-heuristic algorithm-based feature selection method by finding the optimal set of features in the solution space has been widely used. However, this method is prone to trap into local optimality in a sufficiently large solution space. In this paper, we first propose a binary dandelion algorithm (BDA) to improve classification accuracy. In addition, to improve the performance of the algorithm, a binary dandelion algorithm using an improved seeding strategy and chaotic populations (SBDA) is proposed in this paper. Firstly, the strategy of optimizing the seeding radius by using the vibrational function and the historical optimal population increases the complexity of the search process and improves the search performance of the algorithm in the solution space. Secondly, when generating seeds, chaotic populations are generated using chaotic operators, which improves the ability of the algorithm to jump out of the local optimum and improves the stability of the algorithm. In this paper, 15 well-established datasets collected from the UCI machine learning database were adopted to compare four variants of BDA using only chaotic population improvement and in the next experiments, both mechanisms are verified to be effective in improving the performance of the algorithm. In addition, this paper compares the proposed BDA algorithm and SBDA algorithm with eight other classical algorithms. The experimental results show that SBDA can obtain fewer features with higher classification accuracy in most cases. •Proposed a BDA algorithm for solving binary problems.•Proposed a SBDA algorithm by incorporating chaos mapping.•Presented an improved seeding strategy in relation to the historical optimal population.•Studied and applied the feature selection problem with extreme learning machine.
AbstractList Feature selection (FS) is an important pre-processing step in data mining and pattern recognition. It can effectively compress the dimensionality of the feature space to reduce computation time and improve classification performance. The meta-heuristic algorithm-based feature selection method by finding the optimal set of features in the solution space has been widely used. However, this method is prone to trap into local optimality in a sufficiently large solution space. In this paper, we first propose a binary dandelion algorithm (BDA) to improve classification accuracy. In addition, to improve the performance of the algorithm, a binary dandelion algorithm using an improved seeding strategy and chaotic populations (SBDA) is proposed in this paper. Firstly, the strategy of optimizing the seeding radius by using the vibrational function and the historical optimal population increases the complexity of the search process and improves the search performance of the algorithm in the solution space. Secondly, when generating seeds, chaotic populations are generated using chaotic operators, which improves the ability of the algorithm to jump out of the local optimum and improves the stability of the algorithm. In this paper, 15 well-established datasets collected from the UCI machine learning database were adopted to compare four variants of BDA using only chaotic population improvement and in the next experiments, both mechanisms are verified to be effective in improving the performance of the algorithm. In addition, this paper compares the proposed BDA algorithm and SBDA algorithm with eight other classical algorithms. The experimental results show that SBDA can obtain fewer features with higher classification accuracy in most cases. •Proposed a BDA algorithm for solving binary problems.•Proposed a SBDA algorithm by incorporating chaos mapping.•Presented an improved seeding strategy in relation to the historical optimal population.•Studied and applied the feature selection problem with extreme learning machine.
ArticleNumber 109166
Author Chen, Hui
Li, Shaolang
Zhao, Yuxin
Dong, Junwei
Li, Xiaobo
Author_xml – sequence: 1
  givenname: Yuxin
  orcidid: 0000-0002-7649-1788
  surname: Zhao
  fullname: Zhao, Yuxin
– sequence: 2
  givenname: Junwei
  orcidid: 0000-0001-6597-0874
  surname: Dong
  fullname: Dong, Junwei
– sequence: 3
  givenname: Xiaobo
  orcidid: 0000-0003-0607-5567
  surname: Li
  fullname: Li, Xiaobo
  email: lxb@zjnu.edu.cn
– sequence: 4
  givenname: Hui
  orcidid: 0000-0003-2302-2416
  surname: Chen
  fullname: Chen, Hui
– sequence: 5
  givenname: Shaolang
  orcidid: 0000-0002-2072-3148
  surname: Li
  fullname: Li, Shaolang
BookMark eNp9kMFKAzEQhoNUsK2-gKe8wNYkm6ZZ8FKKWqHgRc9xNjtpU7abkmwF396s9eShpxmG_xv4vwkZdaFDQu45m3HG1cN-BinYmWBC5EPFlboiY64XoqiU5qO8z5UuZCXVDZmktGcZqoQek88lrX0H8Zs20DXY-tBRaLch-n53oKfkuy1NiM0wc4DaHYREj-F4aqEfwqmP0OPWY6IuROoQ-lPEzLRoh8AtuXbQJrz7m1Py8fz0vloXm7eX19VyU1hRsr5QXDjmag2yBleVUErJpHUMAaAU1kmhS7Vg3NpG1lhryzh3Ts_njEMjoSmnRJz_2hhSiujMMfpDLmY4M4MjszeDIzM4MmdHGdL_IOv73165lW8vo49nFHOpL4_RJOuxs1lVzM1NE_wl_AfoP4cI
CitedBy_id crossref_primary_10_1007_s11277_023_10578_y
crossref_primary_10_1007_s13369_024_08861_6
crossref_primary_10_1038_s41598_024_77115_0
crossref_primary_10_3390_biomimetics9050298
crossref_primary_10_1016_j_eswa_2023_122390
crossref_primary_10_4018_IJSIR_349907
crossref_primary_10_1016_j_inffus_2024_102361
crossref_primary_10_1016_j_asoc_2025_113792
crossref_primary_10_3390_agriculture15101088
crossref_primary_10_1016_j_knosys_2025_113420
crossref_primary_10_32604_cmes_2025_058473
crossref_primary_10_1007_s13042_025_02721_x
crossref_primary_10_1016_j_ins_2024_120483
crossref_primary_10_1016_j_knosys_2023_111191
crossref_primary_10_1016_j_knosys_2025_114119
crossref_primary_10_1016_j_swevo_2024_101743
crossref_primary_10_1007_s10462_022_10333_y
crossref_primary_10_1016_j_compbiomed_2023_107020
crossref_primary_10_1109_JIOT_2023_3317089
crossref_primary_10_7717_peerj_cs_2084
Cites_doi 10.1109/TMM.2021.3065580
10.1016/j.ins.2020.08.083
10.1007/s00521-020-05297-5
10.1016/j.asoc.2018.10.028
10.1016/j.eswa.2020.114021
10.1109/ACCESS.2020.3024994
10.1109/ACCESS.2021.3079161
10.1109/TCYB.2016.2609408
10.1016/j.swevo.2012.09.002
10.1007/s10462-020-09867-w
10.1109/ACCESS.2021.3049922
10.1109/ACCESS.2020.2970208
10.1016/j.eswa.2008.01.053
10.1109/TSMC.2019.2956121
10.1109/TEVC.2007.896686
10.1016/j.asoc.2021.107302
10.1016/j.ins.2021.01.020
10.1007/s11042-018-5655-8
10.1016/j.asoc.2016.01.019
10.1016/j.ins.2019.08.040
10.1016/j.asoc.2015.07.023
10.1109/JSTARS.2017.2690943
10.1109/JAS.2020.1003462
10.1016/j.advengsoft.2016.01.008
10.1016/S0031-3203(99)00041-2
10.1016/j.ins.2020.03.032
10.1109/TEVC.2015.2504420
10.1016/j.ins.2020.08.081
10.1109/TCYB.2014.2307349
10.1007/s10489-018-1158-6
10.1049/iet-bmt.2018.5063
10.1016/j.imavis.2021.104112
10.1109/ACCESS.2020.3001947
10.1016/j.eswa.2019.06.007
10.1145/3459960.3459974
10.1016/j.ejor.2018.10.051
10.1016/j.neucom.2021.03.110
10.3390/electronics8101130
10.1007/s12065-020-00441-5
10.1016/j.ins.2021.03.016
10.1016/j.ejco.2020.100001
10.1155/2017/4523754
10.1007/s11071-012-0712-8
10.1109/ACCESS.2021.3049547
10.1016/j.csbj.2021.03.010
10.1142/S021812742150108X
10.1371/journal.pcbi.1009224
10.1109/ACCESS.2021.3093336
10.1007/s11227-020-03378-9
10.1109/TSMCB.2012.2228188
10.1109/ACCESS.2021.3061288
10.1016/j.enconman.2016.08.069
10.1016/j.knosys.2018.05.009
10.1016/j.knosys.2011.07.001
10.1109/TSMCC.2010.2054080
10.1007/s11042-018-6808-5
10.1109/ACCESS.2020.3027846
10.1109/ACCESS.2021.3052149
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2022.109166
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2022_109166
S1568494622004161
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c230t-612f0fb8a4baf93a34404cf0eaaa32cf42836701ccd4beb8c011ff85501ad4ad3
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000861626300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Tue Nov 18 21:21:49 EST 2025
Sat Nov 29 07:02:17 EST 2025
Fri Feb 23 02:40:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Chaos algorithm
Feature selection
Seeding strategy
Metaheuristic algorithm
Dandelion algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c230t-612f0fb8a4baf93a34404cf0eaaa32cf42836701ccd4beb8c011ff85501ad4ad3
ORCID 0000-0003-2302-2416
0000-0003-0607-5567
0000-0002-7649-1788
0000-0001-6597-0874
0000-0002-2072-3148
ParticipantIDs crossref_primary_10_1016_j_asoc_2022_109166
crossref_citationtrail_10_1016_j_asoc_2022_109166
elsevier_sciencedirect_doi_10_1016_j_asoc_2022_109166
PublicationCentury 2000
PublicationDate August 2022
2022-08-00
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chen, Wu, Wang (b60) 2021; 107
Kahavi, John (b30) 1997
Zhao, Bao, Ning, Ji, Zhao (b73) 2018; 37
Zhu, Tang (b16) 2021; 9
Li, He, Wang, Zhang (b27) 2019; 274
Ji, Rosset, Hastie, Tibshirani (b58) 2003; 16
Stanovov, Akhmedova, Semenkin (b3) 2021; 566
A.J. Annema, K. Hoen, H. Wallinga, Precision requirements for single-layer feedforward neural networks, in: Proceedings of the International Conference on Microelectronics for Neural Networks & Fuzzy Systems, 2002, F[C].
Almazini, Ku-Mahamud (b43) 2021; 14
Talatahari, Azizi (b71) 2020; 54
Duan, Gao, Gao, Hu, Xu, Huang, Song, Wang, Dong, Jiang (b66) 2021; 17
Yong, Dwg, Xzg, Tian, Xys (b42) 2020; 507
Huang, Song, Gupta, Wu (b51) 2017; 44
Zhang, Zheng, Bai, Zhou (b74) 2020; 8
Nguyen, Xue, Andreae, Zhang (b35) 2019
Zhou, Zhang, Kang, Zhang, Wang (b38) 2020; 547
Feng, Zhao, Liu (b10) 2020; 8
Talatahari, Azizi, Tolouei, Talatahari, Sareh (b1) 2021; 9
Khurshid, Maqsood, Omair, Sarkar, Muhammad (b13) 2021; 9
Wang, Gao, Zhou, Yu (b14) 2021; 8
Li, Xue, Zhang (b28) 2021; 106
Hancer, Xue, Karaboga, Zhang (b44) 2015; 36
Zhang, Gao, Pan, Li, Qiu (b62) 2020; 8
Mirjalili, Lewis (b12) 2016; 95
Sayed, Khoriba, Haggag (b70) 2018; 48
Hassouneh, Turabieh, Thaher, Tumar, Too (b78) 2021; 9
Rida, Almaadeed, Almaadeed (b63) 2019; 8
Khokhar, Dahiya, Parmar (b15) 2021
Shekhawat, Sharma, Kumar, Nayyar, Qureshi (b41) 2021; 9
Kumar, John (b34) 2021
Yu, Liu (b56) 2004; 5
Li (b65) 2022
Motsa, Dlamini, Khumalo (b69) 2013; 72
Kundu, Mitra (b54) 2016; 47
Maadeed, Jiang, Rida, Bouridane (b61) 2019; 78
Liu, Motoda, Setiono, Zheng (b55) 2010
Gao, Yu, Wang, Wang, Cheng, Zhou (b48) 2019; 51
Abbas (b68) 2020; 8
Jiang, Dong (b21) 2016; 126
Diouane (b5) 2021; 9
Too, Abdullah (b75) 2020; 14
Rida, Al-Maadeed, Al-Maadeed, Bakshi (b59) 2020; 79
Kiran (b9) 2021
Kudo, Sklansky (b20) 2000; 33
Han, Chen, Ling, Han (b32) 2021; 62
Chen, Wang, Han, Xiong, Wang, Ling (b46) 2017; 10
Zhao, Sinha, Wei (b53) 2009; 36
Kulkarni, Venayagamoorthy (b23) 2011; 41
Pan (b24) 2012; 26
Liu, Wang, Liu, Gandomi, Daneshmand, Muhammad, Albuquerque (b64) 2021; 23
Bing, Zhang, Browne, Xin (b22) 2016; 20
Bharti, Singh (b72) 2016; 43
Adl, Zhen (b57) 2020; 149
Wei, Ouyang, Zhang, Li, Gao (b8) 2021; 100
Qiao, Zhou, Yang, Yang (b33) 2018; 74
Zhao, Ding, Wang, Cao, Tang (b11) 2021; 183
Tahir, Tubaishat, Al-Obeidat, Shah, Waqas (b36) 2020
Mirjalili, Lewis (b47) 2013; 9
Guan, Zhao, Li (b7) 2021; 164
Faris, Mafarja, Heidari, Aljarah, Ala’m, Mirjalili, Fujita (b76) 2018; 154
Tao, Sang, Guo, Wang (b6) 2021; 9
G.B. Huang, Q.Y. Zhu, C.K. Siew, Extreme learning machine: a new learning scheme of feedforward neural networks, in: Proceedings of the IEEE International Joint Conference on Neural Networks, 2005, F[C].
Ding, Zhou, Piao (b67) 2021; 31
Guha, Khan, Singh, Sarkar, Bhattacharjee (b37) 2020; 33
Adl, Bing, Mz (b39) 2020; 523
Li, Han, Liang, Gong, Liu (b45) 2017; 2017
Abdullah, Saad (b77) 2019; 8
Salesi, Cosma, Mavrocouniotis (b40) 2021; 565
Wei, Hao (b17) 2021; 105
Valle, Venayagamoorthy, Mohagheghi, Hernandez, Harley (b26) 2008; 12
Ouyang (b52) 2021; 448
Blum, Rivest (b29) 1993
Wu, Wang, Li, Cheng, Fang, Cao, Cui (b19) 2021; 19
Too, Abdullah (b79) 2020; 77
Guan, Zhao, Yin, Li (b81) 2021; 547
Lin, Guan, Li, Feng (b18) 2019; 135
Timea Bezdan, Dusan Cvetnic, Luka Gajic, Miodrag Zivkovic, Ivana Strumberger, Nebojsa Bacanin, Feature selection by firefly algorithm with improved initialization strategy, in: Proceedings of the 7th Conference on the Engineering of Computer Based Systems, 2021, F [C].
Ruiz-Cruz, Ornelas-Tellez, Sanchez, Harley, Loukianov (b25) 2013; 43
Esnaashari, Damia (b2) 2021
Bakurov, Castelli, Gau, Fontanella, Vanneschi (b4) 2021; 65
Kl, Kaya, Yildirim (b31) 2021; 219
Yu (10.1016/j.asoc.2022.109166_b56) 2004; 5
Kumar (10.1016/j.asoc.2022.109166_b34) 2021
Khurshid (10.1016/j.asoc.2022.109166_b13) 2021; 9
Kahavi (10.1016/j.asoc.2022.109166_b30) 1997
Shekhawat (10.1016/j.asoc.2022.109166_b41) 2021; 9
Hancer (10.1016/j.asoc.2022.109166_b44) 2015; 36
Chen (10.1016/j.asoc.2022.109166_b46) 2017; 10
Salesi (10.1016/j.asoc.2022.109166_b40) 2021; 565
Khokhar (10.1016/j.asoc.2022.109166_b15) 2021
Rida (10.1016/j.asoc.2022.109166_b59) 2020; 79
Adl (10.1016/j.asoc.2022.109166_b57) 2020; 149
Zhao (10.1016/j.asoc.2022.109166_b73) 2018; 37
Zhu (10.1016/j.asoc.2022.109166_b16) 2021; 9
Wu (10.1016/j.asoc.2022.109166_b19) 2021; 19
Talatahari (10.1016/j.asoc.2022.109166_b1) 2021; 9
Zhao (10.1016/j.asoc.2022.109166_b53) 2009; 36
Zhao (10.1016/j.asoc.2022.109166_b11) 2021; 183
Esnaashari (10.1016/j.asoc.2022.109166_b2) 2021
Gao (10.1016/j.asoc.2022.109166_b48) 2019; 51
Bing (10.1016/j.asoc.2022.109166_b22) 2016; 20
Blum (10.1016/j.asoc.2022.109166_b29) 1993
10.1016/j.asoc.2022.109166_b80
Bharti (10.1016/j.asoc.2022.109166_b72) 2016; 43
Li (10.1016/j.asoc.2022.109166_b45) 2017; 2017
Kudo (10.1016/j.asoc.2022.109166_b20) 2000; 33
Han (10.1016/j.asoc.2022.109166_b32) 2021; 62
Chen (10.1016/j.asoc.2022.109166_b60) 2021; 107
Yong (10.1016/j.asoc.2022.109166_b42) 2020; 507
Abdullah (10.1016/j.asoc.2022.109166_b77) 2019; 8
Liu (10.1016/j.asoc.2022.109166_b64) 2021; 23
Wei (10.1016/j.asoc.2022.109166_b8) 2021; 100
Tao (10.1016/j.asoc.2022.109166_b6) 2021; 9
Jiang (10.1016/j.asoc.2022.109166_b21) 2016; 126
Li (10.1016/j.asoc.2022.109166_b28) 2021; 106
Guha (10.1016/j.asoc.2022.109166_b37) 2020; 33
Li (10.1016/j.asoc.2022.109166_b27) 2019; 274
Maadeed (10.1016/j.asoc.2022.109166_b61) 2019; 78
Wang (10.1016/j.asoc.2022.109166_b14) 2021; 8
10.1016/j.asoc.2022.109166_b50
Talatahari (10.1016/j.asoc.2022.109166_b71) 2020; 54
Faris (10.1016/j.asoc.2022.109166_b76) 2018; 154
Li (10.1016/j.asoc.2022.109166_b65) 2022
Abbas (10.1016/j.asoc.2022.109166_b68) 2020; 8
Sayed (10.1016/j.asoc.2022.109166_b70) 2018; 48
Liu (10.1016/j.asoc.2022.109166_b55) 2010
Kl (10.1016/j.asoc.2022.109166_b31) 2021; 219
Valle (10.1016/j.asoc.2022.109166_b26) 2008; 12
Feng (10.1016/j.asoc.2022.109166_b10) 2020; 8
Qiao (10.1016/j.asoc.2022.109166_b33) 2018; 74
Ruiz-Cruz (10.1016/j.asoc.2022.109166_b25) 2013; 43
Nguyen (10.1016/j.asoc.2022.109166_b35) 2019
Guan (10.1016/j.asoc.2022.109166_b81) 2021; 547
Mirjalili (10.1016/j.asoc.2022.109166_b12) 2016; 95
Kulkarni (10.1016/j.asoc.2022.109166_b23) 2011; 41
Ouyang (10.1016/j.asoc.2022.109166_b52) 2021; 448
Kundu (10.1016/j.asoc.2022.109166_b54) 2016; 47
Huang (10.1016/j.asoc.2022.109166_b51) 2017; 44
Too (10.1016/j.asoc.2022.109166_b79) 2020; 77
Stanovov (10.1016/j.asoc.2022.109166_b3) 2021; 566
10.1016/j.asoc.2022.109166_b49
Ji (10.1016/j.asoc.2022.109166_b58) 2003; 16
Wei (10.1016/j.asoc.2022.109166_b17) 2021; 105
Pan (10.1016/j.asoc.2022.109166_b24) 2012; 26
Bakurov (10.1016/j.asoc.2022.109166_b4) 2021; 65
Almazini (10.1016/j.asoc.2022.109166_b43) 2021; 14
Zhang (10.1016/j.asoc.2022.109166_b62) 2020; 8
Too (10.1016/j.asoc.2022.109166_b75) 2020; 14
Zhang (10.1016/j.asoc.2022.109166_b74) 2020; 8
Duan (10.1016/j.asoc.2022.109166_b66) 2021; 17
Guan (10.1016/j.asoc.2022.109166_b7) 2021; 164
Kiran (10.1016/j.asoc.2022.109166_b9) 2021
Tahir (10.1016/j.asoc.2022.109166_b36) 2020
Mirjalili (10.1016/j.asoc.2022.109166_b47) 2013; 9
Lin (10.1016/j.asoc.2022.109166_b18) 2019; 135
Diouane (10.1016/j.asoc.2022.109166_b5) 2021; 9
Zhou (10.1016/j.asoc.2022.109166_b38) 2020; 547
Motsa (10.1016/j.asoc.2022.109166_b69) 2013; 72
Hassouneh (10.1016/j.asoc.2022.109166_b78) 2021; 9
Ding (10.1016/j.asoc.2022.109166_b67) 2021; 31
Rida (10.1016/j.asoc.2022.109166_b63) 2019; 8
Adl (10.1016/j.asoc.2022.109166_b39) 2020; 523
References_xml – start-page: 117
  year: 1993
  end-page: 127
  ident: b29
  article-title: Training a 3-Node Neural Network Is NP-Complete
– reference: Timea Bezdan, Dusan Cvetnic, Luka Gajic, Miodrag Zivkovic, Ivana Strumberger, Nebojsa Bacanin, Feature selection by firefly algorithm with improved initialization strategy, in: Proceedings of the 7th Conference on the Engineering of Computer Based Systems, 2021, F [C].
– volume: 9
  start-page: 33522
  year: 2021
  end-page: 33531
  ident: b6
  article-title: Improved particle swarm optimization algorithm for AGV path planning
  publication-title: IEEE Access
– volume: 164
  year: 2021
  ident: b7
  article-title: An improved ant colony optimization with an automatic updating mechanism for constraint satisfaction problems
  publication-title: Expert Syst. Appl.
– volume: 37
  year: 2018
  ident: b73
  article-title: An improved binary differential evolution algorithm for feature selection in molecular signatures
  publication-title: QSAR Comb. Sci.
– volume: 106
  year: 2021
  ident: b28
  article-title: Improved binary particle swarm optimization for feature selection with new initialization and search space reduction strategies
  publication-title: Appl. Soft Comput.
– volume: 43
  start-page: 20
  year: 2016
  end-page: 34
  ident: b72
  article-title: Opposition chaotic fitness mutation based adaptive inertia weight BPSO for feature selection in text clustering
  publication-title: Appl. Soft Comput.
– volume: 154
  start-page: 43
  year: 2018
  end-page: 67
  ident: b76
  article-title: An efficient binary salp swarm algorithm with crossover scheme for feature selection problems
  publication-title: Knowl.-Based Syst.
– volume: 36
  start-page: 334
  year: 2015
  end-page: 348
  ident: b44
  article-title: A binary ABC algorithm based on advanced similarity scheme for feature selection
  publication-title: Appl. Soft Comput.
– volume: 126
  start-page: 991
  year: 2016
  end-page: 1002
  ident: b21
  article-title: A nonlinear support vector machine model with hard penalty function based on glowworm swarm optimization for forecasting daily global solar radiation
  publication-title: Energy Convers. Manage.
– volume: 33
  start-page: 5267
  year: 2020
  end-page: 5286
  ident: b37
  article-title: CGA: a new feature selection model for visual human action recognition
  publication-title: Neural Comput. Appl.
– volume: 5
  start-page: 1205
  year: 2004
  end-page: 1224
  ident: b56
  article-title: Efficient feature selection via analysis of relevance and redundancy
  publication-title: J. Mach. Learn. Res.
– volume: 48
  start-page: 3462
  year: 2018
  end-page: 3481
  ident: b70
  article-title: A novel chaotic salp swarm algorithm for global optimization and feature selection
  publication-title: Appl. Intell.
– volume: 9
  start-page: 71244
  year: 2021
  end-page: 71261
  ident: b1
  article-title: Crystal structure algorithm (CryStAl): A metaheuristic optimization method
  publication-title: IEEE Access
– start-page: 1
  year: 2020
  end-page: 22
  ident: b36
  article-title: A novel binary chaotic genetic algorithm for feature selection and its utility in affective computing and healthcare
  publication-title: Neural Comput. Appl.
– volume: 72
  start-page: 265
  year: 2013
  end-page: 283
  ident: b69
  article-title: A new multistage spectral relaxation method for solving chaotic initial value systems
  publication-title: Nonlinear Dynam.
– volume: 31
  year: 2021
  ident: b67
  article-title: Investigation on the running-in quality at different rotating speeds by chaos theory
  publication-title: Int. J. Bifurcation Chaos
– volume: 523
  start-page: 245
  year: 2020
  end-page: 265
  ident: b39
  article-title: Multi-objective feature selection using hybridization of a genetic algorithm and direct multisearch for key quality characteristic selection
  publication-title: Inform. Sci.
– volume: 507
  start-page: 67
  year: 2020
  end-page: 85
  ident: b42
  article-title: Binary differential evolution with self-learning for multi-objective feature selection
  publication-title: Inform. Sci.
– volume: 10
  start-page: 3454
  year: 2017
  end-page: 3464
  ident: b46
  article-title: A new air pollution source identification method based on remotely sensed aerosol and improved glowworm swarm optimization
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 105
  year: 2021
  ident: b17
  article-title: Multistart solution-based tabu search for the set-union knapsack problem
  publication-title: Appl. Soft Comput.
– year: 2021
  ident: b9
  article-title: A binary artificial bee colony algorithm and its performance assessment
  publication-title: Expert Syst. Appl.
– volume: 23
  start-page: 2188
  year: 2021
  end-page: 2198
  ident: b64
  article-title: Human memory update strategy: a multi-layer template update mechanism for remote visual monitoring
  publication-title: IEEE Trans. Multimed.
– volume: 79
  start-page: 4867
  year: 2020
  end-page: 4890
  ident: b59
  article-title: A comprehensive overview of feature representation for biometric recognition
  publication-title: Multimedia Tools Appl.
– volume: 8
  start-page: 111945
  year: 2020
  end-page: 111953
  ident: b74
  article-title: Optimal design of sparse array for ultrasonic total focusing method by binary particle swarm optimization
  publication-title: IEEE Access
– volume: 9
  start-page: 1
  year: 2013
  end-page: 14
  ident: b47
  article-title: S-shaped versus V-shaped transfer functions for binary particle swarm optimization
  publication-title: Swarm Evol. Comput.
– reference: G.B. Huang, Q.Y. Zhu, C.K. Siew, Extreme learning machine: a new learning scheme of feedforward neural networks, in: Proceedings of the IEEE International Joint Conference on Neural Networks, 2005, F[C].
– volume: 74
  start-page: 190
  year: 2018
  end-page: 205
  ident: b33
  article-title: A decomposition-based multiobjective evolutionary algorithm with angle-based adaptive penalty
  publication-title: Appl. Soft Comput.
– volume: 19
  start-page: 1567
  year: 2021
  end-page: 1578
  ident: b19
  article-title: Subtypes identification on heart failure with preserved ejection fraction via network enhancement fusion using multi-omics data
  publication-title: Comput. Struct. Biotechnol. J.
– volume: 17
  year: 2021
  ident: b66
  article-title: Evaluation and comparison of multi-omics data integration methods for cancer subtyping
  publication-title: PLoS Comput. Biol.
– start-page: 4
  year: 2010
  end-page: 13
  ident: b55
  article-title: Feature selection: An ever evolving frontier in data mining
– volume: 9
  start-page: 9262
  year: 2021
  end-page: 9276
  ident: b16
  article-title: An ameliorated harmony search algorithm with hybrid convergence mechanism
  publication-title: IEEE Access
– volume: 44
  start-page: 2405
  year: 2017
  end-page: 2417
  ident: b51
  article-title: Semi-supervised and unsupervised extreme learning machines
  publication-title: IEEE Trans. Cybern.
– volume: 16
  start-page: 16
  year: 2003
  ident: b58
  article-title: 1-norm support vector machines
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b12
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
– volume: 135
  start-page: 201
  year: 2019
  end-page: 211
  ident: b18
  article-title: A hybrid binary particle swarm optimization with tabu search for the set-union knapsack problem
  publication-title: Expert Syst. Appl.
– volume: 9
  start-page: 14867
  year: 2021
  end-page: 14882
  ident: b41
  article-title: bSSA: Binary salp swarm algorithm with hybrid data transformation for feature selection
  publication-title: IEEE Access
– volume: 8
  start-page: 14
  year: 2019
  end-page: 28
  ident: b63
  article-title: Robust gait recognition: a comprehensive survey
  publication-title: IET Biometrics
– volume: 14
  start-page: 1691
  year: 2020
  end-page: 1705
  ident: b75
  article-title: Opposition based competitive grey wolf optimizer for EMG feature selection
  publication-title: Evol. Intell.
– volume: 448
  start-page: 82
  year: 2021
  end-page: 93
  ident: b52
  article-title: Feature learning for stacked ELM via low-rank matrix factorization
  publication-title: Neurocomputing
– volume: 8
  start-page: 42864
  year: 2020
  end-page: 42876
  ident: b10
  article-title: Analysis of network coverage optimization based on feedback K-means clustering and artificial fish swarm algorithm
  publication-title: IEEE Access
– volume: 100
  year: 2021
  ident: b8
  article-title: Dynamic collaborative fireworks algorithm and its applications in robust pole assignment optimization
  publication-title: Appl. Soft Comput.
– volume: 149
  year: 2020
  ident: b57
  article-title: Multiobjective feature selection for key quality characteristic identification in production processes using a nondominated-sorting-based whale optimization algorithm - ScienceDirect
  publication-title: Comput. Ind. Eng.
– volume: 183
  year: 2021
  ident: b11
  article-title: A hierarchical guidance strategy assisted fruit fly optimization algorithm with cooperative learning mechanism
  publication-title: Expert Syst. Appl.
– volume: 41
  start-page: 262
  year: 2011
  end-page: 267
  ident: b23
  article-title: Particle swarm optimization in wireless-sensor networks: A brief survey
  publication-title: IEEE Trans. Syst. Man Cybern. C (Appl. Rev.)
– volume: 565
  start-page: 105
  year: 2021
  end-page: 127
  ident: b40
  article-title: TAGA: Tabu asexual genetic algorithm embedded in a filter/filter feature selection approach for high-dimensional data
  publication-title: Inform. Sci.
– volume: 8
  start-page: 172275
  year: 2020
  end-page: 172295
  ident: b68
  article-title: A color image encryption algorithm based on one time key, chaos theory, and concept of rotor machine
  publication-title: IEEE Access
– volume: 65
  year: 2021
  ident: b4
  article-title: Genetic programming for stacked generalization
  publication-title: Swarm Evol. Comput.
– volume: 43
  start-page: 1698
  year: 2013
  end-page: 1709
  ident: b25
  article-title: Particle swarm optimization for discrete-time inverse optimal control of a doubly fed induction generator
  publication-title: IEEE Trans. Cybern.
– volume: 107
  year: 2021
  ident: b60
  article-title: Whether normalized or not? Towards more robust iris recognition using dynamic programming
  publication-title: Image Vis. Comput.
– volume: 8
  start-page: 94
  year: 2021
  end-page: 109
  ident: b14
  article-title: A multi-layered gravitational search algorithm for function optimization and real-world problems
  publication-title: IEEE/CAA J. Autom. Sin.
– volume: 62
  year: 2021
  ident: b32
  article-title: Multi-objective particle swarm optimization with adaptive strategies for feature selection
  publication-title: Swarm Evol. Comput.
– volume: 566
  start-page: 215
  year: 2021
  end-page: 238
  ident: b3
  article-title: Biased parameter adaptation in differential evolution
  publication-title: Inform. Sci.
– volume: 9
  start-page: 94505
  year: 2021
  end-page: 94522
  ident: b13
  article-title: An improved evolution strategy hybridization with simulated annealing for permutation flow shop scheduling problems
  publication-title: IEEE Access
– year: 2021
  ident: b2
  article-title: Automation of software test data generation using genetic algorithm and reinforcement learning
  publication-title: Expert Syst. Appl.
– volume: 14
  start-page: 332
  year: 2021
  end-page: 345
  ident: b43
  article-title: Adaptive technique for feature selection in modified graph clustering-based ant colony optimization
  publication-title: Int. J. Intell. Eng. Syst.
– volume: 219
  year: 2021
  ident: b31
  article-title: A novel multi population based particle swarm optimization for feature selection
  publication-title: Knowl.-Based Syst.
– year: 2021
  ident: b15
  article-title: Load frequency control of a microgrid employing a 2D Sine logistic map based chaotic sine cosine algorithm
  publication-title: Appl. Soft Comput.
– volume: 78
  start-page: 5665
  year: 2019
  end-page: 5679
  ident: b61
  article-title: Palmprint identification using sparse and dense hybrid representation
  publication-title: Multimedia Tools Appl.
– year: 2022
  ident: b65
  article-title: Research and application of deep learning in image recognition
  publication-title: Proceedings of the 2022 IEEE 2nd International Conference on Power, Electronics and Computer Applications
– volume: 20
  start-page: 606
  year: 2016
  end-page: 626
  ident: b22
  article-title: A survey on evolutionary computation approaches to feature selection
  publication-title: IEEE Trans. Evol. Comput.
– volume: 8
  start-page: 183391
  year: 2020
  end-page: 183400
  ident: b62
  article-title: A score-level fusion of fingerprint matching with fingerprint liveness detection
  publication-title: IEEE Access
– volume: 547
  start-page: 841
  year: 2020
  end-page: 859
  ident: b38
  article-title: A problem-specific non-dominated sorting genetic algorithm for supervised feature selection
  publication-title: Inform. Sci.
– volume: 47
  start-page: 4356
  year: 2016
  end-page: 4366
  ident: b54
  article-title: Feature selection through message passing
  publication-title: IEEE Trans. Cybern.
– volume: 9
  start-page: 14239
  year: 2021
  end-page: 14258
  ident: b78
  article-title: Boosted whale optimization algorithm with natural selection operators for software fault prediction
  publication-title: IEEE Access
– volume: 274
  start-page: 978
  year: 2019
  end-page: 989
  ident: b27
  article-title: Key quality characteristics selection for imbalanced production data using a two-phase bi-objective feature selection method
  publication-title: European J. Oper. Res.
– start-page: 1
  year: 2019
  end-page: 15
  ident: b35
  article-title: A new binary particle swarm optimization approach: Momentum and dynamic balance between exploration and exploitation
  publication-title: IEEE Trans. Cybern.
– volume: 8
  start-page: 1130
  year: 2019
  ident: b77
  article-title: A new quadratic binary Harris Hawk optimization for feature selection
  publication-title: Electronics
– reference: A.J. Annema, K. Hoen, H. Wallinga, Precision requirements for single-layer feedforward neural networks, in: Proceedings of the International Conference on Microelectronics for Neural Networks & Fuzzy Systems, 2002, F[C].
– volume: 77
  start-page: 2844
  year: 2020
  end-page: 2874
  ident: b79
  article-title: A new and fast rival genetic algorithm for feature selection
  publication-title: J. Supercomput.
– volume: 26
  start-page: 69
  year: 2012
  end-page: 74
  ident: b24
  article-title: A new fruit fly optimization algorithm: Taking the financial distress model as an example
  publication-title: Knowl.-Based Syst.
– volume: 54
  start-page: 917
  year: 2020
  end-page: 1004
  ident: b71
  article-title: Chaos game optimization: a novel metaheuristic algorithm
  publication-title: Artif. Intell. Rev.
– volume: 51
  start-page: 3954
  year: 2019
  end-page: 3967
  ident: b48
  article-title: Chaotic local search-based differential evolution algorithms for optimization
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– volume: 33
  start-page: 25
  year: 2000
  end-page: 41
  ident: b20
  article-title: Comparison of algorithms that select features for pattern classifiers
  publication-title: Pattern Recognit.
– volume: 547
  start-page: 870
  year: 2021
  end-page: 886
  ident: b81
  article-title: A differential evolution based feature combination selection algorithm for high-dimensional data
  publication-title: Inform. Sci.
– volume: 12
  start-page: 171
  year: 2008
  end-page: 195
  ident: b26
  article-title: Particle swarm optimization: Basic concepts, variants and applications in power systems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 9
  year: 2021
  ident: b5
  article-title: A merit function approach for evolution strategies
  publication-title: EURO J. Comput. Optim.
– volume: 36
  start-page: 2633
  year: 2009
  end-page: 2644
  ident: b53
  article-title: Effects of feature construction on classification performance: An empirical study in bank failure prediction
  publication-title: Expert Syst. Appl.
– start-page: 1
  year: 2021
  end-page: 15
  ident: b34
  article-title: A novel gaussian based particle swarm optimization gravitational search algorithm for feature selection and classification
  publication-title: Neural Comput. Appl.
– volume: 2017
  year: 2017
  ident: b45
  article-title: New dandelion algorithm optimizes extreme learning machine for biomedical classification problems
  publication-title: Comput. Intell. Neurosci.
– start-page: 273
  year: 1997
  end-page: 324
  ident: b30
  article-title: Wrapper for Feature Subset Selection
– volume: 23
  start-page: 2188
  year: 2021
  ident: 10.1016/j.asoc.2022.109166_b64
  article-title: Human memory update strategy: a multi-layer template update mechanism for remote visual monitoring
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2021.3065580
– volume: 183
  issue: 6
  year: 2021
  ident: 10.1016/j.asoc.2022.109166_b11
  article-title: A hierarchical guidance strategy assisted fruit fly optimization algorithm with cooperative learning mechanism
  publication-title: Expert Syst. Appl.
– volume: 547
  start-page: 841
  year: 2020
  ident: 10.1016/j.asoc.2022.109166_b38
  article-title: A problem-specific non-dominated sorting genetic algorithm for supervised feature selection
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2020.08.083
– volume: 33
  start-page: 5267
  issue: 10
  year: 2020
  ident: 10.1016/j.asoc.2022.109166_b37
  article-title: CGA: a new feature selection model for visual human action recognition
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05297-5
– volume: 74
  start-page: 190
  year: 2018
  ident: 10.1016/j.asoc.2022.109166_b33
  article-title: A decomposition-based multiobjective evolutionary algorithm with angle-based adaptive penalty
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.10.028
– volume: 164
  year: 2021
  ident: 10.1016/j.asoc.2022.109166_b7
  article-title: An improved ant colony optimization with an automatic updating mechanism for constraint satisfaction problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114021
– volume: 5
  start-page: 1205
  year: 2004
  ident: 10.1016/j.asoc.2022.109166_b56
  article-title: Efficient feature selection via analysis of relevance and redundancy
  publication-title: J. Mach. Learn. Res.
– volume: 8
  start-page: 172275
  year: 2020
  ident: 10.1016/j.asoc.2022.109166_b68
  article-title: A color image encryption algorithm based on one time key, chaos theory, and concept of rotor machine
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3024994
– volume: 9
  start-page: 71244
  year: 2021
  ident: 10.1016/j.asoc.2022.109166_b1
  article-title: Crystal structure algorithm (CryStAl): A metaheuristic optimization method
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3079161
– ident: 10.1016/j.asoc.2022.109166_b49
– ident: 10.1016/j.asoc.2022.109166_b50
– volume: 47
  start-page: 4356
  issue: 12
  year: 2016
  ident: 10.1016/j.asoc.2022.109166_b54
  article-title: Feature selection through message passing
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2609408
– start-page: 4
  year: 2010
  ident: 10.1016/j.asoc.2022.109166_b55
– volume: 9
  start-page: 1
  issue: Complete
  year: 2013
  ident: 10.1016/j.asoc.2022.109166_b47
  article-title: S-shaped versus V-shaped transfer functions for binary particle swarm optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2012.09.002
– volume: 54
  start-page: 917
  issue: 2
  year: 2020
  ident: 10.1016/j.asoc.2022.109166_b71
  article-title: Chaos game optimization: a novel metaheuristic algorithm
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09867-w
– volume: 9
  start-page: 9262
  year: 2021
  ident: 10.1016/j.asoc.2022.109166_b16
  article-title: An ameliorated harmony search algorithm with hybrid convergence mechanism
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3049922
– volume: 8
  start-page: 42864
  year: 2020
  ident: 10.1016/j.asoc.2022.109166_b10
  article-title: Analysis of network coverage optimization based on feedback K-means clustering and artificial fish swarm algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2970208
– volume: 36
  start-page: 2633
  issue: 2
  year: 2009
  ident: 10.1016/j.asoc.2022.109166_b53
  article-title: Effects of feature construction on classification performance: An empirical study in bank failure prediction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.01.053
– volume: 51
  start-page: 3954
  issue: 6
  year: 2019
  ident: 10.1016/j.asoc.2022.109166_b48
  article-title: Chaotic local search-based differential evolution algorithms for optimization
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2019.2956121
– start-page: 1
  year: 2021
  ident: 10.1016/j.asoc.2022.109166_b34
  article-title: A novel gaussian based particle swarm optimization gravitational search algorithm for feature selection and classification
  publication-title: Neural Comput. Appl.
– volume: 12
  start-page: 171
  issue: 2
  year: 2008
  ident: 10.1016/j.asoc.2022.109166_b26
  article-title: Particle swarm optimization: Basic concepts, variants and applications in power systems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.896686
– volume: 106
  year: 2021
  ident: 10.1016/j.asoc.2022.109166_b28
  article-title: Improved binary particle swarm optimization for feature selection with new initialization and search space reduction strategies
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107302
– volume: 565
  start-page: 105
  year: 2021
  ident: 10.1016/j.asoc.2022.109166_b40
  article-title: TAGA: Tabu asexual genetic algorithm embedded in a filter/filter feature selection approach for high-dimensional data
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2021.01.020
– volume: 78
  start-page: 5665
  issue: 5
  year: 2019
  ident: 10.1016/j.asoc.2022.109166_b61
  article-title: Palmprint identification using sparse and dense hybrid representation
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-018-5655-8
– issue: 5
  year: 2021
  ident: 10.1016/j.asoc.2022.109166_b2
  article-title: Automation of software test data generation using genetic algorithm and reinforcement learning
  publication-title: Expert Syst. Appl.
– volume: 43
  start-page: 20
  year: 2016
  ident: 10.1016/j.asoc.2022.109166_b72
  article-title: Opposition chaotic fitness mutation based adaptive inertia weight BPSO for feature selection in text clustering
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.01.019
– volume: 62
  issue: 6
  year: 2021
  ident: 10.1016/j.asoc.2022.109166_b32
  article-title: Multi-objective particle swarm optimization with adaptive strategies for feature selection
  publication-title: Swarm Evol. Comput.
– volume: 507
  start-page: 67
  year: 2020
  ident: 10.1016/j.asoc.2022.109166_b42
  article-title: Binary differential evolution with self-learning for multi-objective feature selection
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.08.040
– volume: 36
  start-page: 334
  year: 2015
  ident: 10.1016/j.asoc.2022.109166_b44
  article-title: A binary ABC algorithm based on advanced similarity scheme for feature selection
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.07.023
– start-page: 1
  issue: 99
  year: 2019
  ident: 10.1016/j.asoc.2022.109166_b35
  article-title: A new binary particle swarm optimization approach: Momentum and dynamic balance between exploration and exploitation
  publication-title: IEEE Trans. Cybern.
– volume: 10
  start-page: 3454
  issue: 8
  year: 2017
  ident: 10.1016/j.asoc.2022.109166_b46
  article-title: A new air pollution source identification method based on remotely sensed aerosol and improved glowworm swarm optimization
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2017.2690943
– volume: 8
  start-page: 94
  issue: 1
  year: 2021
  ident: 10.1016/j.asoc.2022.109166_b14
  article-title: A multi-layered gravitational search algorithm for function optimization and real-world problems
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2020.1003462
– volume: 65
  issue: 6
  year: 2021
  ident: 10.1016/j.asoc.2022.109166_b4
  article-title: Genetic programming for stacked generalization
  publication-title: Swarm Evol. Comput.
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.asoc.2022.109166_b12
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 33
  start-page: 25
  issue: 1
  year: 2000
  ident: 10.1016/j.asoc.2022.109166_b20
  article-title: Comparison of algorithms that select features for pattern classifiers
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(99)00041-2
– volume: 523
  start-page: 245
  year: 2020
  ident: 10.1016/j.asoc.2022.109166_b39
  article-title: Multi-objective feature selection using hybridization of a genetic algorithm and direct multisearch for key quality characteristic selection
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2020.03.032
– volume: 20
  start-page: 606
  issue: 4
  year: 2016
  ident: 10.1016/j.asoc.2022.109166_b22
  article-title: A survey on evolutionary computation approaches to feature selection
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2015.2504420
– volume: 547
  start-page: 870
  year: 2021
  ident: 10.1016/j.asoc.2022.109166_b81
  article-title: A differential evolution based feature combination selection algorithm for high-dimensional data
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2020.08.081
– volume: 44
  start-page: 2405
  issue: 12
  year: 2017
  ident: 10.1016/j.asoc.2022.109166_b51
  article-title: Semi-supervised and unsupervised extreme learning machines
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2307349
– volume: 48
  start-page: 3462
  issue: 10
  year: 2018
  ident: 10.1016/j.asoc.2022.109166_b70
  article-title: A novel chaotic salp swarm algorithm for global optimization and feature selection
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-018-1158-6
– volume: 8
  start-page: 14
  issue: 1
  year: 2019
  ident: 10.1016/j.asoc.2022.109166_b63
  article-title: Robust gait recognition: a comprehensive survey
  publication-title: IET Biometrics
  doi: 10.1049/iet-bmt.2018.5063
– volume: 107
  year: 2021
  ident: 10.1016/j.asoc.2022.109166_b60
  article-title: Whether normalized or not? Towards more robust iris recognition using dynamic programming
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2021.104112
– year: 2022
  ident: 10.1016/j.asoc.2022.109166_b65
  article-title: Research and application of deep learning in image recognition
– volume: 8
  start-page: 111945
  year: 2020
  ident: 10.1016/j.asoc.2022.109166_b74
  article-title: Optimal design of sparse array for ultrasonic total focusing method by binary particle swarm optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3001947
– volume: 135
  start-page: 201
  year: 2019
  ident: 10.1016/j.asoc.2022.109166_b18
  article-title: A hybrid binary particle swarm optimization with tabu search for the set-union knapsack problem
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.06.007
– ident: 10.1016/j.asoc.2022.109166_b80
  doi: 10.1145/3459960.3459974
– issue: 3
  year: 2021
  ident: 10.1016/j.asoc.2022.109166_b9
  article-title: A binary artificial bee colony algorithm and its performance assessment
  publication-title: Expert Syst. Appl.
– volume: 274
  start-page: 978
  issue: 3
  year: 2019
  ident: 10.1016/j.asoc.2022.109166_b27
  article-title: Key quality characteristics selection for imbalanced production data using a two-phase bi-objective feature selection method
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2018.10.051
– volume: 100
  issue: 6
  year: 2021
  ident: 10.1016/j.asoc.2022.109166_b8
  article-title: Dynamic collaborative fireworks algorithm and its applications in robust pole assignment optimization
  publication-title: Appl. Soft Comput.
– volume: 448
  start-page: 82
  year: 2021
  ident: 10.1016/j.asoc.2022.109166_b52
  article-title: Feature learning for stacked ELM via low-rank matrix factorization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.110
– volume: 105
  issue: 6
  year: 2021
  ident: 10.1016/j.asoc.2022.109166_b17
  article-title: Multistart solution-based tabu search for the set-union knapsack problem
  publication-title: Appl. Soft Comput.
– volume: 8
  start-page: 1130
  issue: 10
  year: 2019
  ident: 10.1016/j.asoc.2022.109166_b77
  article-title: A new quadratic binary Harris Hawk optimization for feature selection
  publication-title: Electronics
  doi: 10.3390/electronics8101130
– volume: 14
  start-page: 1691
  issue: 4
  year: 2020
  ident: 10.1016/j.asoc.2022.109166_b75
  article-title: Opposition based competitive grey wolf optimizer for EMG feature selection
  publication-title: Evol. Intell.
  doi: 10.1007/s12065-020-00441-5
– volume: 566
  start-page: 215
  year: 2021
  ident: 10.1016/j.asoc.2022.109166_b3
  article-title: Biased parameter adaptation in differential evolution
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2021.03.016
– volume: 9
  year: 2021
  ident: 10.1016/j.asoc.2022.109166_b5
  article-title: A merit function approach for evolution strategies
  publication-title: EURO J. Comput. Optim.
  doi: 10.1016/j.ejco.2020.100001
– volume: 2017
  year: 2017
  ident: 10.1016/j.asoc.2022.109166_b45
  article-title: New dandelion algorithm optimizes extreme learning machine for biomedical classification problems
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2017/4523754
– volume: 72
  start-page: 265
  issue: 1–2
  year: 2013
  ident: 10.1016/j.asoc.2022.109166_b69
  article-title: A new multistage spectral relaxation method for solving chaotic initial value systems
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-012-0712-8
– volume: 9
  start-page: 14867
  year: 2021
  ident: 10.1016/j.asoc.2022.109166_b41
  article-title: bSSA: Binary salp swarm algorithm with hybrid data transformation for feature selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3049547
– volume: 19
  start-page: 1567
  year: 2021
  ident: 10.1016/j.asoc.2022.109166_b19
  article-title: Subtypes identification on heart failure with preserved ejection fraction via network enhancement fusion using multi-omics data
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2021.03.010
– volume: 37
  issue: 4
  year: 2018
  ident: 10.1016/j.asoc.2022.109166_b73
  article-title: An improved binary differential evolution algorithm for feature selection in molecular signatures
  publication-title: QSAR Comb. Sci.
– volume: 31
  issue: 7
  year: 2021
  ident: 10.1016/j.asoc.2022.109166_b67
  article-title: Investigation on the running-in quality at different rotating speeds by chaos theory
  publication-title: Int. J. Bifurcation Chaos
  doi: 10.1142/S021812742150108X
– volume: 17
  issue: 8
  year: 2021
  ident: 10.1016/j.asoc.2022.109166_b66
  article-title: Evaluation and comparison of multi-omics data integration methods for cancer subtyping
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1009224
– start-page: 273
  year: 1997
  ident: 10.1016/j.asoc.2022.109166_b30
– volume: 9
  start-page: 94505
  year: 2021
  ident: 10.1016/j.asoc.2022.109166_b13
  article-title: An improved evolution strategy hybridization with simulated annealing for permutation flow shop scheduling problems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3093336
– volume: 77
  start-page: 2844
  issue: 3
  year: 2020
  ident: 10.1016/j.asoc.2022.109166_b79
  article-title: A new and fast rival genetic algorithm for feature selection
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-020-03378-9
– volume: 43
  start-page: 1698
  issue: 6
  year: 2013
  ident: 10.1016/j.asoc.2022.109166_b25
  article-title: Particle swarm optimization for discrete-time inverse optimal control of a doubly fed induction generator
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TSMCB.2012.2228188
– issue: 4
  year: 2021
  ident: 10.1016/j.asoc.2022.109166_b15
  article-title: Load frequency control of a microgrid employing a 2D Sine logistic map based chaotic sine cosine algorithm
  publication-title: Appl. Soft Comput.
– volume: 16
  start-page: 16
  issue: 1
  year: 2003
  ident: 10.1016/j.asoc.2022.109166_b58
  article-title: 1-norm support vector machines
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 149
  year: 2020
  ident: 10.1016/j.asoc.2022.109166_b57
  article-title: Multiobjective feature selection for key quality characteristic identification in production processes using a nondominated-sorting-based whale optimization algorithm - ScienceDirect
  publication-title: Comput. Ind. Eng.
– volume: 9
  start-page: 33522
  year: 2021
  ident: 10.1016/j.asoc.2022.109166_b6
  article-title: Improved particle swarm optimization algorithm for AGV path planning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3061288
– volume: 126
  start-page: 991
  year: 2016
  ident: 10.1016/j.asoc.2022.109166_b21
  article-title: A nonlinear support vector machine model with hard penalty function based on glowworm swarm optimization for forecasting daily global solar radiation
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2016.08.069
– start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.asoc.2022.109166_b36
  article-title: A novel binary chaotic genetic algorithm for feature selection and its utility in affective computing and healthcare
  publication-title: Neural Comput. Appl.
– volume: 14
  start-page: 332
  issue: 3
  year: 2021
  ident: 10.1016/j.asoc.2022.109166_b43
  article-title: Adaptive technique for feature selection in modified graph clustering-based ant colony optimization
  publication-title: Int. J. Intell. Eng. Syst.
– volume: 154
  start-page: 43
  year: 2018
  ident: 10.1016/j.asoc.2022.109166_b76
  article-title: An efficient binary salp swarm algorithm with crossover scheme for feature selection problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.05.009
– volume: 26
  start-page: 69
  issue: 2
  year: 2012
  ident: 10.1016/j.asoc.2022.109166_b24
  article-title: A new fruit fly optimization algorithm: Taking the financial distress model as an example
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2011.07.001
– volume: 219
  issue: 4
  year: 2021
  ident: 10.1016/j.asoc.2022.109166_b31
  article-title: A novel multi population based particle swarm optimization for feature selection
  publication-title: Knowl.-Based Syst.
– volume: 41
  start-page: 262
  issue: 2
  year: 2011
  ident: 10.1016/j.asoc.2022.109166_b23
  article-title: Particle swarm optimization in wireless-sensor networks: A brief survey
  publication-title: IEEE Trans. Syst. Man Cybern. C (Appl. Rev.)
  doi: 10.1109/TSMCC.2010.2054080
– volume: 79
  start-page: 4867
  issue: 7
  year: 2020
  ident: 10.1016/j.asoc.2022.109166_b59
  article-title: A comprehensive overview of feature representation for biometric recognition
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-018-6808-5
– volume: 8
  start-page: 183391
  year: 2020
  ident: 10.1016/j.asoc.2022.109166_b62
  article-title: A score-level fusion of fingerprint matching with fingerprint liveness detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3027846
– volume: 9
  start-page: 14239
  year: 2021
  ident: 10.1016/j.asoc.2022.109166_b78
  article-title: Boosted whale optimization algorithm with natural selection operators for software fault prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3052149
– start-page: 117
  year: 1993
  ident: 10.1016/j.asoc.2022.109166_b29
SSID ssj0016928
Score 2.4734795
Snippet Feature selection (FS) is an important pre-processing step in data mining and pattern recognition. It can effectively compress the dimensionality of the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109166
SubjectTerms Chaos algorithm
Dandelion algorithm
Feature selection
Metaheuristic algorithm
Seeding strategy
Title A binary dandelion algorithm using seeding and chaos population strategies for feature selection
URI https://dx.doi.org/10.1016/j.asoc.2022.109166
Volume 125
WOSCitedRecordID wos000861626300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMXKC9RHtUeuFmOYnv9OkZQ1Fao4lBQOJn1epe6Su0otkt-PrNPhwIVPXCxImt3Ynk-zcyOv5lB6G0geEISOJbQUIQ-IVXk5_OE-SJlJXj4KK4UGfPLx_TsLFsu80-TydrWwlyv0qbJttt8_V9VDfdA2bJ09g7qdkLhBvwGpcMV1A7Xf1L8wit1jW0l88MrRTdefW83dX9x5Q0qNdBpl6Vr2i5o23lrN8fL63rbPUJREAVXrT-9Tg3MsVq0fWtNDNuBMVfs9KG3rlAno1Ui9uuwrR0G31sO8ND84LXjAylSwbKmbdmOjANtEo-Hejc3Acday4xz5jTJfJKbJKO1t2G8YzFlY1I9d-U3Y67zCpczCjidSfGzcfGvnbNveDTHM7QUtstCyiikjELLuIf2wjTOsynaW5wcLU_dl6ckV_N43ZObQivNCbz5JH8OZnYClPN99NCcLPBCI-IxmvDmCXpkp3ZgY8Sfom8LrAGCHUCwAwhWAMEGIBgWYAUQPAIEjwDBABBsAIIdQJ6hzx-Ozt8d-2bOhs_gANr7EOSKuSgzSkoq8ohGsmckE3NOKY1CJmRPviSdB4xVpORlxsAnCCE74QW0IrSKnqNp0zb8BcK8gu1Rwqs4poRGnGYZYSSHN83gIBsEByiwL6xgpgm9nIWyKv6uqgPkuT1r3YLl1tWx1UNhgkgdHBYAq1v2vbzTv7xCD0a8v0bTfjPwN-g-u-7rbnNoMPUTHgKVUw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+binary+dandelion+algorithm+using+seeding+and+chaos+population+strategies+for+feature+selection&rft.jtitle=Applied+soft+computing&rft.au=Zhao%2C+Yuxin&rft.au=Dong%2C+Junwei&rft.au=Li%2C+Xiaobo&rft.au=Chen%2C+Hui&rft.date=2022-08-01&rft.issn=1568-4946&rft.volume=125&rft.spage=109166&rft_id=info:doi/10.1016%2Fj.asoc.2022.109166&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2022_109166
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon