VCoFWMVIFCM: An open-source code for viewpoint-based collaborative feature-weighted multi-view intuitionistic fuzzy clustering
We present VCoFWMVIFCM, an open-source Python implementation of a multi-view fuzzy clustering algorithm based on Intuitionistic Fuzzy c-Means (IFCM). The method integrates adaptive view, feature, and sample weighting to account for varying importance and reduce outlier effects. Local neighborhood in...
Uloženo v:
| Vydáno v: | Software impacts Ročník 23; s. 100743 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.03.2025
|
| Témata: | |
| ISSN: | 2665-9638, 2665-9638 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We present VCoFWMVIFCM, an open-source Python implementation of a multi-view fuzzy clustering algorithm based on Intuitionistic Fuzzy c-Means (IFCM). The method integrates adaptive view, feature, and sample weighting to account for varying importance and reduce outlier effects. Local neighborhood information enhances noise resistance, while a density-based initialization ensures stable centroid selection. These mechanisms collectively improve clustering robustness and accuracy for multi-view data. The modular implementation allows flexible execution and reproducibility, addressing real-world applications where multiple data perspectives exist. The code is publicly accessible on GitHub under the MIT license.
•Provides open-source Python code for multi-view intuitionistic fuzzy clustering.•Implements adaptive weighting for views, features, and samples in clustering.•Includes neighborhood-aware clustering to handle noise and improve robustness.•Initial centroids are selected via a density-based strategy to ensure stability.•Code is modular, well-documented, and publicly available on GitHub for use. |
|---|---|
| ISSN: | 2665-9638 2665-9638 |
| DOI: | 10.1016/j.simpa.2025.100743 |