VCoFWMVIFCM: An open-source code for viewpoint-based collaborative feature-weighted multi-view intuitionistic fuzzy clustering
We present VCoFWMVIFCM, an open-source Python implementation of a multi-view fuzzy clustering algorithm based on Intuitionistic Fuzzy c-Means (IFCM). The method integrates adaptive view, feature, and sample weighting to account for varying importance and reduce outlier effects. Local neighborhood in...
Gespeichert in:
| Veröffentlicht in: | Software impacts Jg. 23; S. 100743 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.03.2025
|
| Schlagworte: | |
| ISSN: | 2665-9638, 2665-9638 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We present VCoFWMVIFCM, an open-source Python implementation of a multi-view fuzzy clustering algorithm based on Intuitionistic Fuzzy c-Means (IFCM). The method integrates adaptive view, feature, and sample weighting to account for varying importance and reduce outlier effects. Local neighborhood information enhances noise resistance, while a density-based initialization ensures stable centroid selection. These mechanisms collectively improve clustering robustness and accuracy for multi-view data. The modular implementation allows flexible execution and reproducibility, addressing real-world applications where multiple data perspectives exist. The code is publicly accessible on GitHub under the MIT license.
•Provides open-source Python code for multi-view intuitionistic fuzzy clustering.•Implements adaptive weighting for views, features, and samples in clustering.•Includes neighborhood-aware clustering to handle noise and improve robustness.•Initial centroids are selected via a density-based strategy to ensure stability.•Code is modular, well-documented, and publicly available on GitHub for use. |
|---|---|
| ISSN: | 2665-9638 2665-9638 |
| DOI: | 10.1016/j.simpa.2025.100743 |