Novel semi-supervised sparse stacked autoencoder integrated with local linear embedding for industrial soft sensing

Data-driven industrial soft sensor modeling techniques have been widely applied in predicting key variables in complex industrial processes. However, with industrial processes becoming increasingly intricate, the data they produce exhibit characteristics such as strong temporal dependencies, high di...

Full description

Saved in:
Bibliographic Details
Published in:ISA transactions
Main Authors: He, Yan-Lin, Jiang, Yu, Gao, Hui-Hui, Xu, Yuan, Zhu, Qun-Xiong
Format: Journal Article
Language:English
Published: United States Elsevier Ltd 04.06.2025
Subjects:
ISSN:0019-0578, 1879-2022, 1879-2022
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Data-driven industrial soft sensor modeling techniques have been widely applied in predicting key variables in complex industrial processes. However, with industrial processes becoming increasingly intricate, the data they produce exhibit characteristics such as strong temporal dependencies, high dimensionality, and local structures, posing significant challenges for soft sensing. To address these issues, this paper proposes novel Semi-Supervised Sparse Stacked Autoencoder integrated with the Local Linear Embedding algorithm (SS-SAE-LLE). Unlike traditional autoencoders (AE), which capture hierarchical data features by minimizing global fitting error, SS-SAE-LLE simultaneously accounts for the spatio-temporal characteristics of the data through the local linear embedding algorithm. Moreover, it incorporates supervised tuning by leveraging labeled data and training with a semi-supervised learning framework, further improving prediction accuracy. To evaluate the feasibility of the proposed method, experiments are conducted on PTA solvent and SRU system datasets. The simulation results demonstrate that SS-SAE-LLE achieves higher prediction accuracy than other models, highlighting its applicability in the field of industrial soft sensor modeling. •SS-SAE-LLE is proposed for data-driven industrial soft sensor modeling.•SS-SAE-LLE captures hierarchical and spatio-temporal features simultaneously.•Supervised tuning with labeled data enhances the regression performance.•SS-SAE-LLE effectively addresses high dimensionality and temporal dependencies in process data.•Experimental results on PTA solvent and SRU datasets demonstrate the superior accuracy of SS-SAE-LLE.
AbstractList Data-driven industrial soft sensor modeling techniques have been widely applied in predicting key variables in complex industrial processes. However, with industrial processes becoming increasingly intricate, the data they produce exhibit characteristics such as strong temporal dependencies, high dimensionality, and local structures, posing significant challenges for soft sensing. To address these issues, this paper proposes novel Semi-Supervised Sparse Stacked Autoencoder integrated with the Local Linear Embedding algorithm (SS-SAE-LLE). Unlike traditional autoencoders (AE), which capture hierarchical data features by minimizing global fitting error, SS-SAE-LLE simultaneously accounts for the spatio-temporal characteristics of the data through the local linear embedding algorithm. Moreover, it incorporates supervised tuning by leveraging labeled data and training with a semi-supervised learning framework, further improving prediction accuracy. To evaluate the feasibility of the proposed method, experiments are conducted on PTA solvent and SRU system datasets. The simulation results demonstrate that SS-SAE-LLE achieves higher prediction accuracy than other models, highlighting its applicability in the field of industrial soft sensor modeling.Data-driven industrial soft sensor modeling techniques have been widely applied in predicting key variables in complex industrial processes. However, with industrial processes becoming increasingly intricate, the data they produce exhibit characteristics such as strong temporal dependencies, high dimensionality, and local structures, posing significant challenges for soft sensing. To address these issues, this paper proposes novel Semi-Supervised Sparse Stacked Autoencoder integrated with the Local Linear Embedding algorithm (SS-SAE-LLE). Unlike traditional autoencoders (AE), which capture hierarchical data features by minimizing global fitting error, SS-SAE-LLE simultaneously accounts for the spatio-temporal characteristics of the data through the local linear embedding algorithm. Moreover, it incorporates supervised tuning by leveraging labeled data and training with a semi-supervised learning framework, further improving prediction accuracy. To evaluate the feasibility of the proposed method, experiments are conducted on PTA solvent and SRU system datasets. The simulation results demonstrate that SS-SAE-LLE achieves higher prediction accuracy than other models, highlighting its applicability in the field of industrial soft sensor modeling.
Data-driven industrial soft sensor modeling techniques have been widely applied in predicting key variables in complex industrial processes. However, with industrial processes becoming increasingly intricate, the data they produce exhibit characteristics such as strong temporal dependencies, high dimensionality, and local structures, posing significant challenges for soft sensing. To address these issues, this paper proposes novel Semi-Supervised Sparse Stacked Autoencoder integrated with the Local Linear Embedding algorithm (SS-SAE-LLE). Unlike traditional autoencoders (AE), which capture hierarchical data features by minimizing global fitting error, SS-SAE-LLE simultaneously accounts for the spatio-temporal characteristics of the data through the local linear embedding algorithm. Moreover, it incorporates supervised tuning by leveraging labeled data and training with a semi-supervised learning framework, further improving prediction accuracy. To evaluate the feasibility of the proposed method, experiments are conducted on PTA solvent and SRU system datasets. The simulation results demonstrate that SS-SAE-LLE achieves higher prediction accuracy than other models, highlighting its applicability in the field of industrial soft sensor modeling. •SS-SAE-LLE is proposed for data-driven industrial soft sensor modeling.•SS-SAE-LLE captures hierarchical and spatio-temporal features simultaneously.•Supervised tuning with labeled data enhances the regression performance.•SS-SAE-LLE effectively addresses high dimensionality and temporal dependencies in process data.•Experimental results on PTA solvent and SRU datasets demonstrate the superior accuracy of SS-SAE-LLE.
Data-driven industrial soft sensor modeling techniques have been widely applied in predicting key variables in complex industrial processes. However, with industrial processes becoming increasingly intricate, the data they produce exhibit characteristics such as strong temporal dependencies, high dimensionality, and local structures, posing significant challenges for soft sensing. To address these issues, this paper proposes novel Semi-Supervised Sparse Stacked Autoencoder integrated with the Local Linear Embedding algorithm (SS-SAE-LLE). Unlike traditional autoencoders (AE), which capture hierarchical data features by minimizing global fitting error, SS-SAE-LLE simultaneously accounts for the spatio-temporal characteristics of the data through the local linear embedding algorithm. Moreover, it incorporates supervised tuning by leveraging labeled data and training with a semi-supervised learning framework, further improving prediction accuracy. To evaluate the feasibility of the proposed method, experiments are conducted on PTA solvent and SRU system datasets. The simulation results demonstrate that SS-SAE-LLE achieves higher prediction accuracy than other models, highlighting its applicability in the field of industrial soft sensor modeling.
Author Gao, Hui-Hui
Xu, Yuan
He, Yan-Lin
Zhu, Qun-Xiong
Jiang, Yu
Author_xml – sequence: 1
  givenname: Yan-Lin
  orcidid: 0000-0001-9999-3679
  surname: He
  fullname: He, Yan-Lin
  email: heyl@mail.buct.edu.cn
  organization: College of Information Science & Technology, Beijing University of Chemical Technology, Beijing, 100029, China
– sequence: 2
  givenname: Yu
  orcidid: 0009-0003-0550-2421
  surname: Jiang
  fullname: Jiang, Yu
  email: 2022200816@mail.buct.edu.cn
  organization: College of Information Science & Technology, Beijing University of Chemical Technology, Beijing, 100029, China
– sequence: 3
  givenname: Hui-Hui
  surname: Gao
  fullname: Gao, Hui-Hui
  email: gaohh@bjut.edu.cn
  organization: School of Information Science and Technology, Engineering Research Center of Digital Community, Ministry of Education, Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing, 100124, China
– sequence: 4
  givenname: Yuan
  surname: Xu
  fullname: Xu, Yuan
  email: xuyuan@mail.buct.edu.cn
  organization: College of Information Science & Technology, Beijing University of Chemical Technology, Beijing, 100029, China
– sequence: 5
  givenname: Qun-Xiong
  surname: Zhu
  fullname: Zhu, Qun-Xiong
  email: zhuqx@mail.buct.edu.cn
  organization: College of Information Science & Technology, Beijing University of Chemical Technology, Beijing, 100029, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40517087$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFP4zAQhS3EirbAP0AoRy4pjuMkzgUJIRaQEHvZPVsTe1pckrh4nK7236-rAkekkSzP-2Ysv7dgx6MfkbGLgi8LXtTXm6UjiAGWgotqyVNJecTmhWraPLXEMZtzXrQ5rxo1YwuiDeeJbNUJm0leFQ1XzZzRi99hnxEOLqdpi2HnCG1GWwiEGUUwb-kKU_Q4Gm8xZG6MuA4QU_uvi69Z7w30We9GhJDh0KG1blxnK79H7UQxuKSTX8X0ykhJO2M_VtATnn-cp-zPz_vfd4_586-Hp7vb59wIoWJuwIKoZWnLClvTlabtamNrU3dCCNmYVhkBUiqhkoLQtmVRVqrigKjACluesqvD3m3w7xNS1IMjg30PI_qJdCmSWU1VN1VCLz_QqRvQ6m1wA4R_-tOoBMgDYIInCrj6Qgqu93nojT7kofd5aJ5KyjR2cxjD9M-dw6DJuOQkWhfQRG29-37Bf0Htl9s
Cites_doi 10.1016/j.engappai.2022.105737
10.1016/j.measurement.2022.111439
10.1016/j.isatra.2025.02.010
10.1016/j.conengprac.2024.106181
10.1109/TII.2018.2809730
10.1109/TCYB.2024.3365068
10.1016/j.isatra.2020.10.006
10.1021/acs.iecr.0c03839
10.1016/j.ins.2024.120389
10.1016/j.ins.2024.121565
10.1016/j.cjche.2015.11.012
10.1016/j.compchemeng.2008.12.012
10.1016/j.ress.2024.110135
10.1016/j.engappai.2021.104341
10.1016/j.ins.2022.10.036
10.1109/TII.2023.3268745
10.1016/j.eswa.2024.125052
10.1109/TII.2023.3313631
10.1016/j.jprocont.2024.103300
10.1016/j.cose.2023.103144
10.1016/j.engappai.2024.109065
10.1016/j.ins.2024.121072
10.1109/TIE.2016.2622668
10.1016/j.ifacol.2024.08.320
10.1016/j.aei.2020.101136
10.1016/j.isatra.2023.04.012
10.1016/j.knosys.2024.112341
10.1016/j.patcog.2024.111187
10.1109/TII.2024.3465597
10.1016/j.compchemeng.2024.108925
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright © 2025 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2025 Elsevier Ltd
– notice: Copyright © 2025 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.isatra.2025.05.044
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1879-2022
ExternalDocumentID 40517087
10_1016_j_isatra_2025_05_044
S0019057825002782
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
6P2
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFO
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSH
SSQ
SST
SSZ
T5K
T9H
TAE
TN5
UHS
UNMZH
WUQ
XPP
ZMT
ZY4
~G-
9DU
AAYXX
ACLOT
CITATION
EFKBS
EFLBG
~HD
NPM
7X8
ID FETCH-LOGICAL-c228t-cada2643d35e9cb3c9b6cd6c6b22247c98c2a44828c9bea993135850aee8ad2d3
ISSN 0019-0578
1879-2022
IngestDate Thu Oct 02 22:35:29 EDT 2025
Mon Jul 21 05:59:04 EDT 2025
Sat Nov 29 07:48:34 EST 2025
Sat Jul 05 17:12:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Industrial processes
Industrial soft sensors
Local features
Data-driven modelling
Language English
License Copyright © 2025 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c228t-cada2643d35e9cb3c9b6cd6c6b22247c98c2a44828c9bea993135850aee8ad2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0003-0550-2421
0000-0001-9999-3679
PMID 40517087
PQID 3218775675
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3218775675
pubmed_primary_40517087
crossref_primary_10_1016_j_isatra_2025_05_044
elsevier_sciencedirect_doi_10_1016_j_isatra_2025_05_044
PublicationCentury 2000
PublicationDate 2025-Jun-04
PublicationDateYYYYMMDD 2025-06-04
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-Jun-04
  day: 04
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ISA transactions
PublicationTitleAlternate ISA Trans
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Xu, He, Zhu (bib0165) 2021; 109
Tian, He, Zhu (bib0160) 2020; 59
Yue, Wang, Zhu, Yuan, Yang (bib0045) 2024; 665
Yu, Zhang, Jiang, Yan (bib0035) 2024; 301
He, Lu, Zhu (bib0145) 2025; 21
Yuan, Huang, Ye, Wang, Wang, Yang (bib0150) 2024; 54
Zhao, Deng, Li (bib0020) 2023; 139
Wang, Chen, Hao, Cai, Wei (bib0110) 2025; 690
Lee, Kim, Maqsood, Moon, Rho (bib0120) 2024; 81
Cheng, Yu, Wang, Jiang, Cao (bib0055) 2024; 137
He, Li, Ma, Zhu, Lu (bib0060) 2023; 119
Liu, Wang, Wang, Yuan (bib0095) 2021; 104
Wang, Zhu, He (bib0040) 2024; 58
Zhang, Dong, Peng, Sun (bib0090) 2024; 257
Li, Xu, Zhu, He (bib0080) 2025
Zhang, Chen, Liu, Wu (bib0130) 2023; 128
Xu, Xie, Sun, Cao (bib0050) 2025; 155
Ren, Liu, Wan (bib0070) 2022; 198
Wang, Shao, Huang, Lu, Zhang, Chen (bib0135) 2022; 614
Kadlec, Gabrys, Strandt (bib0030) 2009; 33
Yuan, Huang, Wang, Yang, Gui (bib0065) 2018; 14
Tian, Xu, Zhu, He (bib0025) 2021; 70
Xiao, Qiu, Ha, Bani, Zhou, Sotiras (bib0125) 2025; 161
Zhou, Wang, Wang, Guan (bib0085) 2024; 680
Liu, Shi, Lu, Gao, Zhang (bib0140) 2024; 247
Yan, Tang, Lin (bib0170) 2016; 64
Xu, Zhu, Ke, He, Zhang, Xu (bib0005) 2025; 193
Jin, Dong, Qian, Wang, Yang, Chen (bib0010) 2025; 159
He, Wang, Zhu (bib0155) 2024; 20
Yin, Niu, He, Li, Lee (bib0105) 2020; 46
Tian, Zhu, He (bib0075) 2024; 20
Shao, Tian, Wang (bib0100) 2015; 23
Song, Zhang, Shi, He, Xu, Zhu (bib0015) 2024; 142
Chen, Xu, Zhu, He (bib0115) 2024; 73
Yin (10.1016/j.isatra.2025.05.044_bib0105) 2020; 46
He (10.1016/j.isatra.2025.05.044_bib0060) 2023; 119
Zhang (10.1016/j.isatra.2025.05.044_bib0130) 2023; 128
Jin (10.1016/j.isatra.2025.05.044_bib0010) 2025; 159
Wang (10.1016/j.isatra.2025.05.044_bib0135) 2022; 614
Xu (10.1016/j.isatra.2025.05.044_bib0050) 2025; 155
Wang (10.1016/j.isatra.2025.05.044_bib0040) 2024; 58
Zhang (10.1016/j.isatra.2025.05.044_bib0165) 2021; 109
Liu (10.1016/j.isatra.2025.05.044_bib0095) 2021; 104
Tian (10.1016/j.isatra.2025.05.044_bib0160) 2020; 59
Cheng (10.1016/j.isatra.2025.05.044_bib0055) 2024; 137
Shao (10.1016/j.isatra.2025.05.044_bib0100) 2015; 23
Liu (10.1016/j.isatra.2025.05.044_bib0140) 2024; 247
Tian (10.1016/j.isatra.2025.05.044_bib0025) 2021; 70
Yan (10.1016/j.isatra.2025.05.044_bib0170) 2016; 64
Li (10.1016/j.isatra.2025.05.044_bib0080) 2025
Song (10.1016/j.isatra.2025.05.044_bib0015) 2024; 142
Wang (10.1016/j.isatra.2025.05.044_bib0110) 2025; 690
Kadlec (10.1016/j.isatra.2025.05.044_bib0030) 2009; 33
Lee (10.1016/j.isatra.2025.05.044_bib0120) 2024; 81
Zhou (10.1016/j.isatra.2025.05.044_bib0085) 2024; 680
Xu (10.1016/j.isatra.2025.05.044_bib0005) 2025; 193
Yue (10.1016/j.isatra.2025.05.044_bib0045) 2024; 665
Zhao (10.1016/j.isatra.2025.05.044_bib0020) 2023; 139
Yuan (10.1016/j.isatra.2025.05.044_bib0065) 2018; 14
Tian (10.1016/j.isatra.2025.05.044_bib0075) 2024; 20
Chen (10.1016/j.isatra.2025.05.044_bib0115) 2024; 73
Ren (10.1016/j.isatra.2025.05.044_bib0070) 2022; 198
Yuan (10.1016/j.isatra.2025.05.044_bib0150) 2024; 54
Yu (10.1016/j.isatra.2025.05.044_bib0035) 2024; 301
Xiao (10.1016/j.isatra.2025.05.044_bib0125) 2025; 161
He (10.1016/j.isatra.2025.05.044_bib0155) 2024; 20
Zhang (10.1016/j.isatra.2025.05.044_bib0090) 2024; 257
He (10.1016/j.isatra.2025.05.044_bib0145) 2025; 21
References_xml – volume: 128
  year: 2023
  ident: bib0130
  article-title: An intrusion detection method based on stacked sparse autoencoder and improved Gaussian mixture model
  publication-title: Comput Secur
– volume: 690
  year: 2025
  ident: bib0110
  article-title: A novel self-training framework for semi-supervised soft sensor modeling based on indeterminate variational autoencoder
  publication-title: Inf Sci (Ny)
– volume: 20
  start-page: 3748
  year: 2024
  end-page: 3755
  ident: bib0155
  article-title: Improved Bi-LSTM with distributed nonlinear extensions and parallel inputs for soft sensing
  publication-title: IEEE Trans Ind Inf
– volume: 680
  year: 2024
  ident: bib0085
  article-title: Predicting air quality using a multi-scale spatiotemporal graph attention network
  publication-title: Inf Sci (Ny)
– volume: 198
  year: 2022
  ident: bib0070
  article-title: VMD-SEAE-TL-based data-driven soft sensor modeling for a complex industrial batch processes
  publication-title: Measurement
– volume: 46
  year: 2020
  ident: bib0105
  article-title: Ensemble deep learning based semi-supervised soft sensor modeling method and its application on quality prediction for coal preparation process
  publication-title: Adv Eng Inf
– volume: 59
  start-page: 19361
  year: 2020
  end-page: 19369
  ident: bib0160
  article-title: Soft sensor development using improved whale optimization and regularization-based functional link neural network
  publication-title: Ind Eng Chem Res
– volume: 14
  start-page: 3235
  year: 2018
  end-page: 3243
  ident: bib0065
  article-title: Deep learning-based feature representation and its application for soft sensor modeling with variable-wise weighted SAE
  publication-title: IEEE Trans Ind Inf
– volume: 119
  year: 2023
  ident: bib0060
  article-title: Attribute-relevant distributed variational autoencoder integrated with LSTM for dynamic industrial soft sensing
  publication-title: Eng Appl Artif Intell
– volume: 161
  year: 2025
  ident: bib0125
  article-title: SC-VAE: sparse coding-based variational autoencoder with learned ISTA
  publication-title: Pattern Recognit
– volume: 104
  year: 2021
  ident: bib0095
  article-title: Deep learning with nonlocal and local structure preserving stacked autoencoder for soft sensor in industrial processes
  publication-title: Eng Appl Artif Intell
– volume: 54
  start-page: 2696
  year: 2024
  end-page: 2707
  ident: bib0150
  article-title: Quality prediction modeling for industrial processes using multiscale attention-based convolutional neural network
  publication-title: IEEE Trans Cybern
– volume: 614
  start-page: 416
  year: 2022
  end-page: 431
  ident: bib0135
  article-title: Deep locally linear embedding network
  publication-title: Inf Sci (Ny)
– volume: 20
  start-page: 596
  year: 2024
  end-page: 604
  ident: bib0075
  article-title: Novel deep layers-extended autoencoder with correlation and its industrial soft sensing
  publication-title: IEEE Trans Ind Inf
– volume: 64
  start-page: 4237
  year: 2016
  end-page: 4245
  ident: bib0170
  article-title: A data-driven soft sensor modeling method based on deep learning and its application
  publication-title: IEEE Trans Ind Electron
– volume: 58
  start-page: 97
  year: 2024
  end-page: 102
  ident: bib0040
  article-title: Novel distributed broad seasonal trend learning system for industrial soft sensing application
  publication-title: IFAC-PapersOnLine
– volume: 23
  start-page: 1925
  year: 2015
  end-page: 1934
  ident: bib0100
  article-title: Supervised local and non-local structure preserving projections with application to just-in-time learning for adaptive soft sensor
  publication-title: Chin J Chem Eng
– volume: 73
  start-page: 1
  year: 2024
  end-page: 9
  ident: bib0115
  article-title: Soft sensor enhancement for multimodal industrial process data: meta regression Gaussian mixture variational autoencoder
  publication-title: IEEE Trans Instrum Meas
– volume: 139
  start-page: 548
  year: 2023
  end-page: 560
  ident: bib0020
  article-title: A nonlinear industrial soft sensor modeling method based on locality preserving stochastic configuration network with utilizing unlabeled samples
  publication-title: ISA Trans
– volume: 665
  year: 2024
  ident: bib0045
  article-title: Spiking autoencoder for nonlinear industrial process fault detection
  publication-title: Inf Sci (Ny)
– volume: 155
  year: 2025
  ident: bib0050
  article-title: A novel soft sensor modeling method based on gated stacked target-supervised VAE with variable weights
  publication-title: Control Eng Pract
– volume: 137
  year: 2024
  ident: bib0055
  article-title: Semi-supervised soft sensor method for fermentation processes based on physical monotonicity and variational autoencoders
  publication-title: Eng Appl Artif Intell
– volume: 21
  start-page: 858
  year: 2025
  end-page: 865
  ident: bib0145
  article-title: Novel manifold autoencoder for industrial process fault diagnosis
  publication-title: IEEE Trans Ind Inf
– volume: 257
  year: 2024
  ident: bib0090
  article-title: Spatio-temporal feature extraction network based multi-performance indicators synergetic monitoring method for complex industrial processes
  publication-title: Expert Syst Appl
– volume: 193
  year: 2025
  ident: bib0005
  article-title: Virtual sample generation for soft-sensing in small sample scenarios using glow-embedded variational autoencoder
  publication-title: Comput Chem Eng
– volume: 142
  year: 2024
  ident: bib0015
  article-title: Quality-driven deep feature representation learning and its industrial application to soft sensors
  publication-title: J Process Control
– start-page: 1
  year: 2025
  end-page: 12
  ident: bib0080
  article-title: Industrial data imputation based on multiscale spatiotemporal information embedding with asymmetrical transformer
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 81
  start-page: 1275
  year: 2024
  end-page: 1300
  ident: bib0120
  article-title: Advancing autoencoder architectures for enhanced anomaly detection in multivariate industrial time series
  publication-title: Comput Mater Contin
– volume: 70
  start-page: 1
  year: 2021
  end-page: 10
  ident: bib0025
  article-title: Novel virtual sample generation using target-relevant autoencoder for small data-based soft sensor
  publication-title: IEEE Trans Instrum Meas
– volume: 33
  start-page: 795
  year: 2009
  end-page: 814
  ident: bib0030
  article-title: Data-driven soft sensors in the process industry
  publication-title: Comput Chem Eng
– volume: 159
  start-page: 293
  year: 2025
  end-page: 311
  ident: bib0010
  article-title: Soft sensor modeling using deep learning with maximum relevance and minimum redundancy for quality prediction of industrial processes
  publication-title: ISA Trans
– volume: 301
  year: 2024
  ident: bib0035
  article-title: Neural network-based hybrid modeling approach incorporating Bayesian optimization with industrial soft sensor application
  publication-title: Knowl-Based Syst
– volume: 109
  start-page: 229
  year: 2021
  end-page: 241
  ident: bib0165
  article-title: Novel manifold learning based virtual sample generation for optimizing soft sensor with small data
  publication-title: ISA Trans
– volume: 247
  year: 2024
  ident: bib0140
  article-title: A novel local linear embedding algorithm via local mutual representation for bearing fault diagnosis
  publication-title: Reliab Eng Syst Saf
– volume: 119
  year: 2023
  ident: 10.1016/j.isatra.2025.05.044_bib0060
  article-title: Attribute-relevant distributed variational autoencoder integrated with LSTM for dynamic industrial soft sensing
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2022.105737
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.isatra.2025.05.044_bib0025
  article-title: Novel virtual sample generation using target-relevant autoencoder for small data-based soft sensor
  publication-title: IEEE Trans Instrum Meas
– volume: 198
  year: 2022
  ident: 10.1016/j.isatra.2025.05.044_bib0070
  article-title: VMD-SEAE-TL-based data-driven soft sensor modeling for a complex industrial batch processes
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.111439
– start-page: 1
  year: 2025
  ident: 10.1016/j.isatra.2025.05.044_bib0080
  article-title: Industrial data imputation based on multiscale spatiotemporal information embedding with asymmetrical transformer
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 159
  start-page: 293
  year: 2025
  ident: 10.1016/j.isatra.2025.05.044_bib0010
  article-title: Soft sensor modeling using deep learning with maximum relevance and minimum redundancy for quality prediction of industrial processes
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2025.02.010
– volume: 155
  year: 2025
  ident: 10.1016/j.isatra.2025.05.044_bib0050
  article-title: A novel soft sensor modeling method based on gated stacked target-supervised VAE with variable weights
  publication-title: Control Eng Pract
  doi: 10.1016/j.conengprac.2024.106181
– volume: 14
  start-page: 3235
  issue: 7
  year: 2018
  ident: 10.1016/j.isatra.2025.05.044_bib0065
  article-title: Deep learning-based feature representation and its application for soft sensor modeling with variable-wise weighted SAE
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2018.2809730
– volume: 54
  start-page: 2696
  issue: 5
  year: 2024
  ident: 10.1016/j.isatra.2025.05.044_bib0150
  article-title: Quality prediction modeling for industrial processes using multiscale attention-based convolutional neural network
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2024.3365068
– volume: 109
  start-page: 229
  year: 2021
  ident: 10.1016/j.isatra.2025.05.044_bib0165
  article-title: Novel manifold learning based virtual sample generation for optimizing soft sensor with small data
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2020.10.006
– volume: 59
  start-page: 19361
  issue: 43
  year: 2020
  ident: 10.1016/j.isatra.2025.05.044_bib0160
  article-title: Soft sensor development using improved whale optimization and regularization-based functional link neural network
  publication-title: Ind Eng Chem Res
  doi: 10.1021/acs.iecr.0c03839
– volume: 665
  year: 2024
  ident: 10.1016/j.isatra.2025.05.044_bib0045
  article-title: Spiking autoencoder for nonlinear industrial process fault detection
  publication-title: Inf Sci (Ny)
  doi: 10.1016/j.ins.2024.120389
– volume: 690
  year: 2025
  ident: 10.1016/j.isatra.2025.05.044_bib0110
  article-title: A novel self-training framework for semi-supervised soft sensor modeling based on indeterminate variational autoencoder
  publication-title: Inf Sci (Ny)
  doi: 10.1016/j.ins.2024.121565
– volume: 23
  start-page: 1925
  issue: 12
  year: 2015
  ident: 10.1016/j.isatra.2025.05.044_bib0100
  article-title: Supervised local and non-local structure preserving projections with application to just-in-time learning for adaptive soft sensor
  publication-title: Chin J Chem Eng
  doi: 10.1016/j.cjche.2015.11.012
– volume: 33
  start-page: 795
  issue: 4
  year: 2009
  ident: 10.1016/j.isatra.2025.05.044_bib0030
  article-title: Data-driven soft sensors in the process industry
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2008.12.012
– volume: 247
  year: 2024
  ident: 10.1016/j.isatra.2025.05.044_bib0140
  article-title: A novel local linear embedding algorithm via local mutual representation for bearing fault diagnosis
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2024.110135
– volume: 104
  year: 2021
  ident: 10.1016/j.isatra.2025.05.044_bib0095
  article-title: Deep learning with nonlocal and local structure preserving stacked autoencoder for soft sensor in industrial processes
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2021.104341
– volume: 614
  start-page: 416
  year: 2022
  ident: 10.1016/j.isatra.2025.05.044_bib0135
  article-title: Deep locally linear embedding network
  publication-title: Inf Sci (Ny)
  doi: 10.1016/j.ins.2022.10.036
– volume: 20
  start-page: 596
  issue: 1
  year: 2024
  ident: 10.1016/j.isatra.2025.05.044_bib0075
  article-title: Novel deep layers-extended autoencoder with correlation and its industrial soft sensing
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2023.3268745
– volume: 257
  year: 2024
  ident: 10.1016/j.isatra.2025.05.044_bib0090
  article-title: Spatio-temporal feature extraction network based multi-performance indicators synergetic monitoring method for complex industrial processes
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2024.125052
– volume: 20
  start-page: 3748
  issue: 3
  year: 2024
  ident: 10.1016/j.isatra.2025.05.044_bib0155
  article-title: Improved Bi-LSTM with distributed nonlinear extensions and parallel inputs for soft sensing
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2023.3313631
– volume: 142
  year: 2024
  ident: 10.1016/j.isatra.2025.05.044_bib0015
  article-title: Quality-driven deep feature representation learning and its industrial application to soft sensors
  publication-title: J Process Control
  doi: 10.1016/j.jprocont.2024.103300
– volume: 128
  year: 2023
  ident: 10.1016/j.isatra.2025.05.044_bib0130
  article-title: An intrusion detection method based on stacked sparse autoencoder and improved Gaussian mixture model
  publication-title: Comput Secur
  doi: 10.1016/j.cose.2023.103144
– volume: 137
  year: 2024
  ident: 10.1016/j.isatra.2025.05.044_bib0055
  article-title: Semi-supervised soft sensor method for fermentation processes based on physical monotonicity and variational autoencoders
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2024.109065
– volume: 680
  year: 2024
  ident: 10.1016/j.isatra.2025.05.044_bib0085
  article-title: Predicting air quality using a multi-scale spatiotemporal graph attention network
  publication-title: Inf Sci (Ny)
  doi: 10.1016/j.ins.2024.121072
– volume: 81
  start-page: 1275
  issue: 1
  year: 2024
  ident: 10.1016/j.isatra.2025.05.044_bib0120
  article-title: Advancing autoencoder architectures for enhanced anomaly detection in multivariate industrial time series
  publication-title: Comput Mater Contin
– volume: 64
  start-page: 4237
  issue: 5
  year: 2016
  ident: 10.1016/j.isatra.2025.05.044_bib0170
  article-title: A data-driven soft sensor modeling method based on deep learning and its application
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2016.2622668
– volume: 58
  start-page: 97
  issue: 14
  year: 2024
  ident: 10.1016/j.isatra.2025.05.044_bib0040
  article-title: Novel distributed broad seasonal trend learning system for industrial soft sensing application
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2024.08.320
– volume: 46
  year: 2020
  ident: 10.1016/j.isatra.2025.05.044_bib0105
  article-title: Ensemble deep learning based semi-supervised soft sensor modeling method and its application on quality prediction for coal preparation process
  publication-title: Adv Eng Inf
  doi: 10.1016/j.aei.2020.101136
– volume: 73
  start-page: 1
  year: 2024
  ident: 10.1016/j.isatra.2025.05.044_bib0115
  article-title: Soft sensor enhancement for multimodal industrial process data: meta regression Gaussian mixture variational autoencoder
  publication-title: IEEE Trans Instrum Meas
– volume: 139
  start-page: 548
  year: 2023
  ident: 10.1016/j.isatra.2025.05.044_bib0020
  article-title: A nonlinear industrial soft sensor modeling method based on locality preserving stochastic configuration network with utilizing unlabeled samples
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2023.04.012
– volume: 301
  year: 2024
  ident: 10.1016/j.isatra.2025.05.044_bib0035
  article-title: Neural network-based hybrid modeling approach incorporating Bayesian optimization with industrial soft sensor application
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2024.112341
– volume: 161
  year: 2025
  ident: 10.1016/j.isatra.2025.05.044_bib0125
  article-title: SC-VAE: sparse coding-based variational autoencoder with learned ISTA
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2024.111187
– volume: 21
  start-page: 858
  issue: 1
  year: 2025
  ident: 10.1016/j.isatra.2025.05.044_bib0145
  article-title: Novel manifold autoencoder for industrial process fault diagnosis
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2024.3465597
– volume: 193
  year: 2025
  ident: 10.1016/j.isatra.2025.05.044_bib0005
  article-title: Virtual sample generation for soft-sensing in small sample scenarios using glow-embedded variational autoencoder
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2024.108925
SSID ssj0002598
Score 2.3936214
Snippet Data-driven industrial soft sensor modeling techniques have been widely applied in predicting key variables in complex industrial processes. However, with...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Data-driven modelling
Industrial processes
Industrial soft sensors
Local features
Title Novel semi-supervised sparse stacked autoencoder integrated with local linear embedding for industrial soft sensing
URI https://dx.doi.org/10.1016/j.isatra.2025.05.044
https://www.ncbi.nlm.nih.gov/pubmed/40517087
https://www.proquest.com/docview/3218775675
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2022
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002598
  issn: 0019-0578
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swGBVpuoftYazdrbsUDcbYCC6ub5Ifw0hJS8gGS4f7MqFICri0ThbHoT9_n25Ot1DWPQwSExQ7NjnHn47kT-dD6P1UUq26wyCd6dmqhIqAxyoPVAhqOZlFXJoqEd9HZDymRZF_7XR--LUw6ytSVfTmJl_8V6ihDcDWS2f_Ae72R6EBPgPosAXYYXsv4Mfztbrq1eq6DOpmoUNBDaISAsey1m6yHG5b2ePNaq4tLLWTROsY4RLRTffW0_KTL3vqeqqk9OmW5abQRw3xG85S1b7vcwr39Ftf153wRchbyT40M6cXvApGZUvIs9JNV180bSIQN5O3w6YM4O1bi8bu5bjspimi1KRTJbciKyU54GQXIR-p7batWG6nFS5NWtNSW0RFqTFZtX6Rv1tnj7-wk_PRiE0GxeTD4megq4rpp--uxMoO2o1ImtMu2u2fDoqztq-GwZ9ZLOkvxC-uNBmA2ye-S7zcNTgxImXyBD12owvct6zYQx1V7aNHtzwn99Gei-Y1_ugsxz89RbUhDf6DNNiSBjvS4FukwRvSYE0abEiDLWlwSxoMpMEb0mBNGuxI8wydnwwmn4eBK8cRiCiiq0BwyUE-xzJOVS6mscinmZCZyKagMRMicioiDnd7ROEbxUH4HscwGA25UpTLSMbPUbeaV-olwjQEUTRT2SxWKlFRyGfHeS5inhHQo5lMDlDg_2e2sK4rzKcjXjKLC9O4sBBeCexPPBjMKUerCBmQ6S9HvvPYMQis-mkZr9S8qVkM4peQFAbUB-iFBbW9lkQ724WUvLrH0a_Rw8398AZ1V8tGvUUPxHpV1stDtEMKeuho-QvZLafk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+semi-supervised+sparse+stacked+autoencoder+integrated+with+local+linear+embedding+for+industrial+soft+sensing&rft.jtitle=ISA+transactions&rft.au=He%2C+Yan-Lin&rft.au=Jiang%2C+Yu&rft.au=Gao%2C+Hui-Hui&rft.au=Xu%2C+Yuan&rft.date=2025-06-04&rft.issn=1879-2022&rft.eissn=1879-2022&rft_id=info:doi/10.1016%2Fj.isatra.2025.05.044&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-0578&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-0578&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-0578&client=summon