Independence numbers of the 2-token graphs of some join graphs

The 2-token graphF2(G) of a graph G is the graph whose set of vertices consists of all the 2-subsets of V(G), where two vertices are adjacent if and only if their symmetric difference is an edge in G. Let G be the join graph of En and H, where H is any graph. In this paper, we give a method to const...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Boletín de la Sociedad Matemática Mexicana Ročník 31; číslo 2
Hlavní autoři: Rivera, Luis Manuel, Vazquez Briones, Gerardo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Heidelberg Springer Nature B.V 01.07.2025
Témata:
ISSN:1405-213X, 2296-4495
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The 2-token graphF2(G) of a graph G is the graph whose set of vertices consists of all the 2-subsets of V(G), where two vertices are adjacent if and only if their symmetric difference is an edge in G. Let G be the join graph of En and H, where H is any graph. In this paper, we give a method to construct an independent set I′ of F2(G) from an independent set I of F2(G) such that |I′|≥|I|. As an application, we obtain the independence number of the 2-token graphs of fan graphs Fn,m, wheel graphs Wn,m and En+Kn.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1405-213X
2296-4495
DOI:10.1007/s40590-025-00773-1