Independence numbers of the 2-token graphs of some join graphs

The 2-token graphF2(G) of a graph G is the graph whose set of vertices consists of all the 2-subsets of V(G), where two vertices are adjacent if and only if their symmetric difference is an edge in G. Let G be the join graph of En and H, where H is any graph. In this paper, we give a method to const...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Boletín de la Sociedad Matemática Mexicana Ročník 31; číslo 2
Hlavní autori: Rivera, Luis Manuel, Vazquez Briones, Gerardo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Heidelberg Springer Nature B.V 01.07.2025
Predmet:
ISSN:1405-213X, 2296-4495
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The 2-token graphF2(G) of a graph G is the graph whose set of vertices consists of all the 2-subsets of V(G), where two vertices are adjacent if and only if their symmetric difference is an edge in G. Let G be the join graph of En and H, where H is any graph. In this paper, we give a method to construct an independent set I′ of F2(G) from an independent set I of F2(G) such that |I′|≥|I|. As an application, we obtain the independence number of the 2-token graphs of fan graphs Fn,m, wheel graphs Wn,m and En+Kn.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1405-213X
2296-4495
DOI:10.1007/s40590-025-00773-1