Independence numbers of the 2-token graphs of some join graphs
The 2-token graphF2(G) of a graph G is the graph whose set of vertices consists of all the 2-subsets of V(G), where two vertices are adjacent if and only if their symmetric difference is an edge in G. Let G be the join graph of En and H, where H is any graph. In this paper, we give a method to const...
Uložené v:
| Vydané v: | Boletín de la Sociedad Matemática Mexicana Ročník 31; číslo 2 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Heidelberg
Springer Nature B.V
01.07.2025
|
| Predmet: | |
| ISSN: | 1405-213X, 2296-4495 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The 2-token graphF2(G) of a graph G is the graph whose set of vertices consists of all the 2-subsets of V(G), where two vertices are adjacent if and only if their symmetric difference is an edge in G. Let G be the join graph of En and H, where H is any graph. In this paper, we give a method to construct an independent set I′ of F2(G) from an independent set I of F2(G) such that |I′|≥|I|. As an application, we obtain the independence number of the 2-token graphs of fan graphs Fn,m, wheel graphs Wn,m and En+Kn. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1405-213X 2296-4495 |
| DOI: | 10.1007/s40590-025-00773-1 |