Energy-efficient clustering in wireless sensor networks using multi-objective genetic algorithm with adaptive parameter

Wireless Sensor Networks (WSNs) play a vital role in modern digital infrastructure, enabling critical applications in environmental monitoring, industrial automation, healthcare, and smart cities. However, existing WSN clustering approaches suffer from three major limitations: they address optimizat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Telecommunication systems Ročník 89; číslo 1; s. 1
Hlavní autoři: Ejaz, Muhammad, Asim, Muhammad, Jinsong, Gui, Chelloug, Samia Allaoua, El-Latif, Ahmed A. Abd
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer Nature B.V 01.03.2026
Témata:
ISSN:1018-4864, 1572-9451
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Wireless Sensor Networks (WSNs) play a vital role in modern digital infrastructure, enabling critical applications in environmental monitoring, industrial automation, healthcare, and smart cities. However, existing WSN clustering approaches suffer from three major limitations: they address optimization objectives in isolation rather than holistically, lack adaptive capabilities to handle dynamic network conditions, and fail to effectively balance trade-offs between energy efficiency, coverage quality, and network lifetime. This research aims to develop a comprehensive clustering optimization framework that simultaneously addresses multiple network performance metrics while providing dynamic adaptation capabilities. We propose the Multi-Objective Genetic Algorithm with Adaptive Parameters (MOGAA), integrating four key components: adaptive parameter control system, predictive energy consumption model, comprehensive fitness evaluation framework, and specialized genetic operators designed for WSN clustering optimization. Experimental results demonstrate significant improvements: 44.44% increase in energy efficiency compared to LEACH, 41.67% extension in network lifetime, and 20.40% improvement in throughput. MOGAA maintains optimal cluster distribution (mean:9.0nodes,σ:3.95) with exceptional coverage stability (coefficient of variation: 0.021) across various network configurations. These results have significant implications for real-world WSN deployments, particularly applications requiring long-term autonomous operation. MOGAA’s ability to maintain balanced performance across multiple objectives while adapting to network dynamics makes it valuable for critical monitoring applications and large-scale sensor networks.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1018-4864
1572-9451
DOI:10.1007/s11235-025-01351-6