Hierarchical gradient parameter estimation algorithms for fractional order Wiener OEARMA system

In this paper, the identification of fractional order Wiener output error auto-regressive moving average (OEARMA) systems is discussed. The dynamic part of the Wiener OEARMA system is an OEARMA structure, and the static part is two-stage nonlinearity. The identification expression is obtained by key...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nonlinear dynamics Ročník 113; číslo 15; s. 19579 - 19598
Hlavní autoři: Li, Junhong, Zhang, Hongrui, Xiao, Kang, Gu, Juping
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Nature B.V 01.08.2025
Témata:
ISSN:0924-090X, 1573-269X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, the identification of fractional order Wiener output error auto-regressive moving average (OEARMA) systems is discussed. The dynamic part of the Wiener OEARMA system is an OEARMA structure, and the static part is two-stage nonlinearity. The identification expression is obtained by key term separation technique and definition of the Grünwald Letnikov factional differential. Then, the hierarchical extended stochastic gradient (H-ESG) and hierarchical multi-innovation extended stochastic gradient (H-MIESG) methods are proposed for identification of the unknown parameter in the system and the the convergence is verified. Through numerical simulations, the feasibility of the derived algorithms is studied. The identification accuracy of H-MIESG is satisfactory, which reflects its excellent identification efficiency.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0924-090X
1573-269X
DOI:10.1007/s11071-025-11187-z