Stability of optimal shapes and convergence of thresholding algorithms in linear and spectral optimal control problems

We prove the convergence of the fixed-point (also called thresholding) algorithm in three optimal control problems under large volume constraints. This algorithm was introduced by Céa, Gioan and Michel, and is of constant use in the simulation of L∞-L1 optimal control problems. In this paper we cons...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematische annalen Ročník 392; číslo 3; s. 4181 - 4219
Hlavní autori: Chambolle, Antonin, Mazari-Fouquer, Idriss, Privat, Yannick
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Heidelberg Springer Nature B.V 01.07.2025
Predmet:
ISSN:0025-5831, 1432-1807
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We prove the convergence of the fixed-point (also called thresholding) algorithm in three optimal control problems under large volume constraints. This algorithm was introduced by Céa, Gioan and Michel, and is of constant use in the simulation of L∞-L1 optimal control problems. In this paper we consider the optimisation of the Dirichlet energy, of Dirichlet eigenvalues and of certain non-energetic problems. Our proofs rely on new diagonalisation procedure for shape hessians in optimal control problems, which leads to local stability estimates.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-025-03182-x