Stability of optimal shapes and convergence of thresholding algorithms in linear and spectral optimal control problems

We prove the convergence of the fixed-point (also called thresholding) algorithm in three optimal control problems under large volume constraints. This algorithm was introduced by Céa, Gioan and Michel, and is of constant use in the simulation of L∞-L1 optimal control problems. In this paper we cons...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematische annalen Ročník 392; číslo 3; s. 4181 - 4219
Hlavní autoři: Chambolle, Antonin, Mazari-Fouquer, Idriss, Privat, Yannick
Médium: Journal Article
Jazyk:angličtina
Vydáno: Heidelberg Springer Nature B.V 01.07.2025
Témata:
ISSN:0025-5831, 1432-1807
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We prove the convergence of the fixed-point (also called thresholding) algorithm in three optimal control problems under large volume constraints. This algorithm was introduced by Céa, Gioan and Michel, and is of constant use in the simulation of L∞-L1 optimal control problems. In this paper we consider the optimisation of the Dirichlet energy, of Dirichlet eigenvalues and of certain non-energetic problems. Our proofs rely on new diagonalisation procedure for shape hessians in optimal control problems, which leads to local stability estimates.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-025-03182-x