Stochastic forward-backward-half forward splitting algorithm with variance reduction

In this paper, we present a stochastic forward-backward-half forward splitting algorithm with variance reduction for solving the structured monotone inclusion problem composed of a maximally monotone operator, a maximally monotone operator and a cocoercive operator in a separable real Hilbert space....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimization letters Jg. 19; H. 9; S. 1997 - 2010
Hauptverfasser: Qin, Liqian, Zhang, Yaxuan, Dong, Qiao-Li, Rassias, Michael Th
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Heidelberg Springer Nature B.V 01.12.2025
Schlagworte:
ISSN:1862-4472, 1862-4480
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present a stochastic forward-backward-half forward splitting algorithm with variance reduction for solving the structured monotone inclusion problem composed of a maximally monotone operator, a maximally monotone operator and a cocoercive operator in a separable real Hilbert space. By defining a Lyapunov function, we establish the weak almost sure convergence of the proposed algorithm, and obtain the linear convergence when one of the maximally monotone operators is strongly monotone. Numerical examples are provided to show the performance of the proposed algorithm.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1862-4472
1862-4480
DOI:10.1007/s11590-025-02201-9