Properties of Eigenvalues and Generalized Eigenfunctions for Sturm–Liouville Problem with Eigenparameter-Dependent Boundary Conditions

This paper investigates the eigenvalues and generalized eigenfunctions of a Sturm–Liouville problem in which the eigenparameter appears in the boundary conditions. By employing operator pencil theory in a Hilbert space, combined with an appropriate integral transformation, we prove that the system o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mediterranean journal of mathematics Ročník 22; číslo 8; s. 222
Hlavní autoři: Li, Zhiyu, Zheng, Zhaowen, Zhang, Yinghan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Heidelberg Springer Nature B.V 01.12.2025
Témata:
ISSN:1660-5446, 1660-5454
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper investigates the eigenvalues and generalized eigenfunctions of a Sturm–Liouville problem in which the eigenparameter appears in the boundary conditions. By employing operator pencil theory in a Hilbert space, combined with an appropriate integral transformation, we prove that the system of generalized eigenfunctions forms a Riesz basis. Furthermore, we demonstrate that the spectrum consists of a countably infinite set of real, discrete eigenvalues accumulating at infinity and provide a lower bound estimation for the eigenvalues.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1660-5446
1660-5454
DOI:10.1007/s00009-025-02987-z