Properties of Eigenvalues and Generalized Eigenfunctions for Sturm–Liouville Problem with Eigenparameter-Dependent Boundary Conditions
This paper investigates the eigenvalues and generalized eigenfunctions of a Sturm–Liouville problem in which the eigenparameter appears in the boundary conditions. By employing operator pencil theory in a Hilbert space, combined with an appropriate integral transformation, we prove that the system o...
Uloženo v:
| Vydáno v: | Mediterranean journal of mathematics Ročník 22; číslo 8; s. 222 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Heidelberg
Springer Nature B.V
01.12.2025
|
| Témata: | |
| ISSN: | 1660-5446, 1660-5454 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper investigates the eigenvalues and generalized eigenfunctions of a Sturm–Liouville problem in which the eigenparameter appears in the boundary conditions. By employing operator pencil theory in a Hilbert space, combined with an appropriate integral transformation, we prove that the system of generalized eigenfunctions forms a Riesz basis. Furthermore, we demonstrate that the spectrum consists of a countably infinite set of real, discrete eigenvalues accumulating at infinity and provide a lower bound estimation for the eigenvalues. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1660-5446 1660-5454 |
| DOI: | 10.1007/s00009-025-02987-z |