A stochastic gradient algorithm with momentum terms for optimal control problems governed by a convection–diffusion equation with random diffusivity

In this paper, we focus on a numerical investigation of a strongly convex and smooth optimization problem subject to a convection–diffusion equation with uncertain terms. Our approach is based on stochastic approximation where true gradient is replaced by a stochastic ones with suitable momentum ter...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational and applied mathematics Ročník 422; s. 114919
Hlavní autoři: Toraman, Sıtkı Can, Yücel, Hamdullah
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.04.2023
Témata:
ISSN:0377-0427, 1879-1778
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we focus on a numerical investigation of a strongly convex and smooth optimization problem subject to a convection–diffusion equation with uncertain terms. Our approach is based on stochastic approximation where true gradient is replaced by a stochastic ones with suitable momentum term to minimize the objective functional containing random terms. A full error analysis including Monte Carlo, finite element, and stochastic momentum gradient iteration errors is done. Numerical examples are presented to illustrate the performance of the proposed stochastic approximations in the PDE-constrained optimization setting.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2022.114919