A stochastic gradient algorithm with momentum terms for optimal control problems governed by a convection–diffusion equation with random diffusivity

In this paper, we focus on a numerical investigation of a strongly convex and smooth optimization problem subject to a convection–diffusion equation with uncertain terms. Our approach is based on stochastic approximation where true gradient is replaced by a stochastic ones with suitable momentum ter...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of computational and applied mathematics Ročník 422; s. 114919
Hlavní autori: Toraman, Sıtkı Can, Yücel, Hamdullah
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.04.2023
Predmet:
ISSN:0377-0427, 1879-1778
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we focus on a numerical investigation of a strongly convex and smooth optimization problem subject to a convection–diffusion equation with uncertain terms. Our approach is based on stochastic approximation where true gradient is replaced by a stochastic ones with suitable momentum term to minimize the objective functional containing random terms. A full error analysis including Monte Carlo, finite element, and stochastic momentum gradient iteration errors is done. Numerical examples are presented to illustrate the performance of the proposed stochastic approximations in the PDE-constrained optimization setting.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2022.114919