A new piecewise reproducing kernel function algorithm for solving nonlinear Hamiltonian systems
This paper aims to study a new reproducing kernel (RK) function-based collocation method for nonlinear Hamiltonian systems. By applying the associated functions of RK spaces W2,02, W2,03 and W2,04, we propose the second, third and fourth-order schemes, respectively. Since the coefficient matrix of t...
Uloženo v:
| Vydáno v: | Applied mathematics letters Ročník 136; s. 108451 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.02.2023
|
| Témata: | |
| ISSN: | 0893-9659, 1873-5452 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper aims to study a new reproducing kernel (RK) function-based collocation method for nonlinear Hamiltonian systems. By applying the associated functions of RK spaces W2,02, W2,03 and W2,04, we propose the second, third and fourth-order schemes, respectively. Since the coefficient matrix of the linear system obtained by our scheme is symmetric and positive definite, our approach is uniquely solvable.The numerical experiments verify that our algorithms are efficient and can simulate the long time behavior including energy conservation and symplectic structure properties. |
|---|---|
| ISSN: | 0893-9659 1873-5452 |
| DOI: | 10.1016/j.aml.2022.108451 |