Modeling and Discovering Direct Causes for Predictive Models

We introduce a causal modeling framework that captures the input-output behavior of predictive models (e.g., machine learning models). The framework enables us to identify features that directly cause the predictions, which has broad implications for data collection and model evaluation. We then pre...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the International Florida Artificial Intelligence Research Society Conference Ročník 38; číslo 1
Hlavní autoři: Chen, Yizuo, Bhatia, Amit
Médium: Journal Article
Jazyk:angličtina
Vydáno: LibraryPress@UF 14.05.2025
Témata:
ISSN:2334-0754, 2334-0762
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We introduce a causal modeling framework that captures the input-output behavior of predictive models (e.g., machine learning models). The framework enables us to identify features that directly cause the predictions, which has broad implications for data collection and model evaluation. We then present sound and complete algorithms for discovering direct causes (from data) under some assumptions. Furthermore, we propose a novel independence rule that can be integrated with the algorithms to accelerate the discovery process as we demonstrate both theoretically and empirically.
AbstractList We introduce a causal modeling framework that captures the input-output behavior of predictive models (e.g., machine learning models). The framework enables us to identify features that directly cause the predictions, which has broad implications for data collection and model evaluation. We then present sound and complete algorithms for discovering direct causes (from data) under some assumptions. Furthermore, we propose a novel independence rule that can be integrated with the algorithms to accelerate the discovery process as we demonstrate both theoretically and empirically.
Author Chen, Yizuo
Bhatia, Amit
Author_xml – sequence: 1
  givenname: Yizuo
  surname: Chen
  fullname: Chen, Yizuo
– sequence: 2
  givenname: Amit
  surname: Bhatia
  fullname: Bhatia, Amit
BookMark eNo9kMtKAzEUhoNUsNY-gZt5gRlznWTAjbReChVd6Dqc3EpknEhSC769Y0e6Oef8P5xv8V2i2ZAGj9A1wQ2jXLKb0EPMpWGqIQ1hHcbsDM0pY7zGsqWz0y34BVqWEg3mXIq2E2KObp-T830cdhUMrlrHYtPB57-8jtnbfbWC7-JLFVKuXrN30e7jwVfHr3KFzgP0xS__9wK9P9y_rZ7q7cvjZnW3rS2lktWKWGYECRg6C9SDEty0mDvgnhtBHTZEdsGQjhjhOGaUYOUkGfM4wTC2QJuJ6xJ86K8cPyH_6ARRH4uUdxryPtrea9EGJcHKFivMRyBQLKQHx5QlKhgxstjEsjmVkn048QjWR5968qmZ0kRPPtkvF8lqnw
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.32473/flairs.38.1.139003
DatabaseName CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2334-0762
ExternalDocumentID oai_doaj_org_article_56f87ac76080491ba2057ead38c18fb5
10_32473_flairs_38_1_139003
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c2273-81c3b51f0a9ca2ea854b604da4e4b52d0b179fb191b5d4032108d71191d71ab33
IEDL.DBID DOA
ISSN 2334-0754
IngestDate Fri Oct 03 12:44:14 EDT 2025
Sat Nov 29 07:53:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by-nc/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2273-81c3b51f0a9ca2ea854b604da4e4b52d0b179fb191b5d4032108d71191d71ab33
OpenAccessLink https://doaj.org/article/56f87ac76080491ba2057ead38c18fb5
ParticipantIDs doaj_primary_oai_doaj_org_article_56f87ac76080491ba2057ead38c18fb5
crossref_primary_10_32473_flairs_38_1_139003
PublicationCentury 2000
PublicationDate 2025-05-14
PublicationDateYYYYMMDD 2025-05-14
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-14
  day: 14
PublicationDecade 2020
PublicationTitle Proceedings of the International Florida Artificial Intelligence Research Society Conference
PublicationYear 2025
Publisher LibraryPress@UF
Publisher_xml – name: LibraryPress@UF
SSID ssib044756955
ssib059229545
Score 2.2917385
Snippet We introduce a causal modeling framework that captures the input-output behavior of predictive models (e.g., machine learning models). The framework enables us...
SourceID doaj
crossref
SourceType Open Website
Index Database
SubjectTerms causal models
Causality
explainability
Title Modeling and Discovering Direct Causes for Predictive Models
URI https://doaj.org/article/56f87ac76080491ba2057ead38c18fb5
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2334-0762
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib059229545
  issn: 2334-0754
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2334-0762
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044756955
  issn: 2334-0754
  databaseCode: M~E
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SPHgRRcX6IgePbrvZJLsJeNHa4sXSg0JvS14LBanStR797c4kW-3Ni5dA9sVmJo9vSOb7CLkuvWSlDCyrnMAAhRmYBy3KvfAgKsd8xXwUm6imUzWf69mW1BeeCUv0wMlwQ1k2qjKuKgHaCM2sKQBhQPO5ckw1NrKXwq2tYAp6ErLYlfo341JqVK2OisUF5yKDdVIkCiLAExUfNq-4eTLgasAGAInyjYRWt0xtsfnHZWdyQPY7vEjv0n8ekp2wPCK3qGCGeeTULD19WLQOD2JiPc1gdGTWbWgpAFI6W-FWDE5qNL7VHpOXyfh59Jh1MgiZKwBcZIo5biVrcqOdKYJRUtgyF96IIKwsfG5hUDUWAi8rvcgxKUeBiaEOpbGcn5De8m0ZTgkNzHmtg3WVKEUTtPENDDujDOanKs_75GbT6vo9sV3UECVEI9XJSDVXNauTkfrkHi3z8yhSVccL4MC6c2D9lwPP_uMj52SvQGFepFUVF6T3sVqHS7LrPj8W7eoq9g0on77G3zZQulQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+and+Discovering+Direct+Causes+for+Predictive+Models&rft.jtitle=Proceedings+of+the+International+Florida+Artificial+Intelligence+Research+Society+Conference&rft.au=Yizuo+Chen&rft.au=Amit+Bhatia&rft.date=2025-05-14&rft.pub=LibraryPress%40UF&rft.issn=2334-0754&rft.eissn=2334-0762&rft.volume=38&rft.issue=1&rft_id=info:doi/10.32473%2Fflairs.38.1.139003&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_56f87ac76080491ba2057ead38c18fb5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2334-0754&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2334-0754&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2334-0754&client=summon