Applying Convexificators in Nonsmooth Multiobjective Semi-infinite Fractional Interval-Valued Optimization
In this work, we explore a nonsmooth semi-infinite multiobjective fractional interval-valued optimization problem. Using an adequate constraint qualification, we establish necessary optimality conditions in terms of Karush–Kuhn–Tucker multipliers and upper semiregular convexificators. We do not assu...
Uloženo v:
| Vydáno v: | Journal of the Operations Research Society of China (Internet) Ročník 13; číslo 1; s. 210 - 226 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Heidelberg
Springer Nature B.V
01.03.2025
|
| Témata: | |
| ISSN: | 2194-668X, 2194-6698 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this work, we explore a nonsmooth semi-infinite multiobjective fractional interval-valued optimization problem. Using an adequate constraint qualification, we establish necessary optimality conditions in terms of Karush–Kuhn–Tucker multipliers and upper semiregular convexificators. We do not assume that the interval-valued objective function is smooth or that it is convex. There are examples highlighting both our results and the limits of certain past studies. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2194-668X 2194-6698 |
| DOI: | 10.1007/s40305-023-00513-0 |