Applying Convexificators in Nonsmooth Multiobjective Semi-infinite Fractional Interval-Valued Optimization
In this work, we explore a nonsmooth semi-infinite multiobjective fractional interval-valued optimization problem. Using an adequate constraint qualification, we establish necessary optimality conditions in terms of Karush–Kuhn–Tucker multipliers and upper semiregular convexificators. We do not assu...
Gespeichert in:
| Veröffentlicht in: | Journal of the Operations Research Society of China (Internet) Jg. 13; H. 1; S. 210 - 226 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Heidelberg
Springer Nature B.V
01.03.2025
|
| Schlagworte: | |
| ISSN: | 2194-668X, 2194-6698 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this work, we explore a nonsmooth semi-infinite multiobjective fractional interval-valued optimization problem. Using an adequate constraint qualification, we establish necessary optimality conditions in terms of Karush–Kuhn–Tucker multipliers and upper semiregular convexificators. We do not assume that the interval-valued objective function is smooth or that it is convex. There are examples highlighting both our results and the limits of certain past studies. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2194-668X 2194-6698 |
| DOI: | 10.1007/s40305-023-00513-0 |