Applying Convexificators in Nonsmooth Multiobjective Semi-infinite Fractional Interval-Valued Optimization

In this work, we explore a nonsmooth semi-infinite multiobjective fractional interval-valued optimization problem. Using an adequate constraint qualification, we establish necessary optimality conditions in terms of Karush–Kuhn–Tucker multipliers and upper semiregular convexificators. We do not assu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Operations Research Society of China (Internet) Jg. 13; H. 1; S. 210 - 226
Hauptverfasser: Gadhi, Nazih Abderrazzak, Ichatouhane, Aissam
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Heidelberg Springer Nature B.V 01.03.2025
Schlagworte:
ISSN:2194-668X, 2194-6698
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we explore a nonsmooth semi-infinite multiobjective fractional interval-valued optimization problem. Using an adequate constraint qualification, we establish necessary optimality conditions in terms of Karush–Kuhn–Tucker multipliers and upper semiregular convexificators. We do not assume that the interval-valued objective function is smooth or that it is convex. There are examples highlighting both our results and the limits of certain past studies.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2194-668X
2194-6698
DOI:10.1007/s40305-023-00513-0