Applying Convexificators in Nonsmooth Multiobjective Semi-infinite Fractional Interval-Valued Optimization

In this work, we explore a nonsmooth semi-infinite multiobjective fractional interval-valued optimization problem. Using an adequate constraint qualification, we establish necessary optimality conditions in terms of Karush–Kuhn–Tucker multipliers and upper semiregular convexificators. We do not assu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of the Operations Research Society of China (Internet) Ročník 13; číslo 1; s. 210 - 226
Hlavní autoři: Gadhi, Nazih Abderrazzak, Ichatouhane, Aissam
Médium: Journal Article
Jazyk:angličtina
Vydáno: Heidelberg Springer Nature B.V 01.03.2025
Témata:
ISSN:2194-668X, 2194-6698
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this work, we explore a nonsmooth semi-infinite multiobjective fractional interval-valued optimization problem. Using an adequate constraint qualification, we establish necessary optimality conditions in terms of Karush–Kuhn–Tucker multipliers and upper semiregular convexificators. We do not assume that the interval-valued objective function is smooth or that it is convex. There are examples highlighting both our results and the limits of certain past studies.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2194-668X
2194-6698
DOI:10.1007/s40305-023-00513-0