Superlinear convergence of a stabilized SQP-type method for nonlinear semidefinite programming
The stabilized sequential quadratic programming (SQP) method can effectively deal with degenerate nonlinear optimization problems. In the case of nonunique Lagrange multipliers associated with a stationary point of an optimization problem, the stabilized SQP method still obtains superlinear and/or q...
Uloženo v:
| Vydáno v: | Journal of applied mathematics & computing Ročník 71; číslo 1; s. 1309 - 1338 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Dordrecht
Springer Nature B.V
01.02.2025
|
| Témata: | |
| ISSN: | 1598-5865, 1865-2085 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The stabilized sequential quadratic programming (SQP) method can effectively deal with degenerate nonlinear optimization problems. In the case of nonunique Lagrange multipliers associated with a stationary point of an optimization problem, the stabilized SQP method still obtains superlinear and/or quadratic convergence to a primal-dual solution. In this paper, we propose a stabilized sequential quadratic semidefinite programming method for degenerate nonlinear semidefinite programming problems. Under the local error bound condition, the strict complementarity condition, and the second-order sufficient condition, we establish superlinear and/or quadratic convergence of the proposed method. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1598-5865 1865-2085 |
| DOI: | 10.1007/s12190-024-02277-z |