The WSN intrusion detection method based on deep data mining

Aiming at the defects that wireless sensor network is vulnerable to intrusion attacks and affects communication performance, a WSN intrusion detection method based on deep data mining is presented. The network traffic capture tool is used to capture the data stream of the wireless sensor network, an...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of cyber security Ročník 7; číslo 3; s. 115 - 133
Hlavní autor: Zhang, Yiwei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Taylor & Francis 03.07.2023
Témata:
ISSN:2374-2917, 2374-2925
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Aiming at the defects that wireless sensor network is vulnerable to intrusion attacks and affects communication performance, a WSN intrusion detection method based on deep data mining is presented. The network traffic capture tool is used to capture the data stream of the wireless sensor network, and the captured data stream is cleaned and normalized. An improved deep sparse autoencoder is used to extract WSN intrusion features from the normalized data stream. The extracted intrusion features are taken as the initial data of K-means clustering, to optimize the k-means clustering algorithm (KMCA) by genetic algorithm. The reasonable initial center point searched by the genetic algorithm is taken as the input parameter of the improved KMCA. The proposed method can detect internal attacks, external attacks and other intrusion behaviors in wireless sensor networks, and the false detection rate is less than 1%.
AbstractList Aiming at the defects that wireless sensor network is vulnerable to intrusion attacks and affects communication performance, a WSN intrusion detection method based on deep data mining is presented. The network traffic capture tool is used to capture the data stream of the wireless sensor network, and the captured data stream is cleaned and normalized. An improved deep sparse autoencoder is used to extract WSN intrusion features from the normalized data stream. The extracted intrusion features are taken as the initial data of K-means clustering, to optimize the k-means clustering algorithm (KMCA) by genetic algorithm. The reasonable initial center point searched by the genetic algorithm is taken as the input parameter of the improved KMCA. The proposed method can detect internal attacks, external attacks and other intrusion behaviors in wireless sensor networks, and the false detection rate is less than 1%.
Author Zhang, Yiwei
Author_xml – sequence: 1
  givenname: Yiwei
  surname: Zhang
  fullname: Zhang, Yiwei
  email: yiwei_zhang00@163.com
  organization: Sichuan Modern Vocational College
BookMark eNqFkE1LAzEQhoNUsNb-BGH_wNZk0u120YNS_IKiBysewzSZtZHdpCQR6b-3a6sHD3qalxmeF-Y5Zj3nHTF2KvhI8Ck_A1mOoRLlCDjACMQERFUcsH63z6GCoveTRXnEhjG-cc7FFhJV1WcXixVlL08PmXUpvEfrXWYokU5daimtvMmWGMlkXxdaZwYTZq111r2esMMam0jD_Ryw55vrxewunz_e3s-u5rkGKFKOpQRJYzDccCklkKjNRHJTAxYwnXAa66mRhrQmwXlJojJLRI2lkFBKo-WAFbteHXyMgWq1DrbFsFGCq86C-ragOgtqb2HLnf_itE3YvZYC2uZf-nJHW1f70OKHD41RCTeND3VAp21U8u-KT-gjduQ
CitedBy_id crossref_primary_10_1080_23742917_2023_2239590
crossref_primary_10_1080_23742917_2024_2430037
Cites_doi 10.1007/s11227-021-04036-4
10.1007/s11276-019-02059-7
10.1007/s00607-021-01001-0
10.1007/s11227-021-04113-8
10.1109/ACCESS.2022.3144015
10.1109/TCOMM.2021.3071448
10.1109/MNET.001.1900426
10.1007/s11227-021-04128-1
10.1007/s11227-021-04092-w
10.1007/s10994-019-05840-z
10.1007/s11276-022-02928-8
10.1007/s11276-021-02871-0
10.1109/TFUZZ.2020.2992180
10.1007/s11227-021-03708-5
10.1007/s11227-020-03410-y
10.1109/LCOMM.2020.3048995
10.1108/IJILT-09-2021-0144
10.1007/s11227-018-2574-4
10.1007/s11227-021-04303-4
10.1007/s11227-021-04034-6
10.1016/j.knosys.2021.107212
ContentType Journal Article
Copyright 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
Copyright_xml – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
DBID AAYXX
CITATION
DOI 10.1080/23742917.2022.2162195
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2374-2925
EndPage 133
ExternalDocumentID 10_1080_23742917_2022_2162195
2162195
Genre Research Article
GroupedDBID 0BK
0R~
30N
AAGDL
AAHIA
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABJNI
ABLIJ
ABPAQ
ABPEM
ABXUL
ABXYU
ACGFS
ADAHI
ADFNY
ADGTB
ADMLS
ADWHR
AECIN
AEEWU
AEISY
AFRVT
AGDLA
AIJEM
AIYEW
AKBVH
ALMA_UNASSIGNED_HOLDINGS
ALQZU
APAHL
AQTUD
ARCSS
BLEHA
CCCUG
DGEBU
EBS
H13
KYCEM
LJTGL
M4Z
RNANH
ROSJB
RTWRZ
SOJIQ
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TTHFI
TUROJ
UK1
UK3
UK4
ZGOLN
AAYXX
CITATION
ID FETCH-LOGICAL-c225t-a7323e42d0d03332e1fd630df2a52860e4c8d3decce1007e19dbaaca713273dc3
IEDL.DBID TFW
ISSN 2374-2917
IngestDate Sat Nov 29 06:27:15 EST 2025
Tue Nov 18 21:09:46 EST 2025
Mon Oct 20 23:45:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c225t-a7323e42d0d03332e1fd630df2a52860e4c8d3decce1007e19dbaaca713273dc3
PageCount 19
ParticipantIDs crossref_primary_10_1080_23742917_2022_2162195
crossref_citationtrail_10_1080_23742917_2022_2162195
informaworld_taylorfrancis_310_1080_23742917_2022_2162195
PublicationCentury 2000
PublicationDate 07/03/2023
PublicationDateYYYYMMDD 2023-07-03
PublicationDate_xml – month: 07
  year: 2023
  text: 07/03/2023
  day: 03
PublicationDecade 2020
PublicationTitle Journal of cyber security
PublicationYear 2023
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References cit0011
cit0022
cit0001
cit0012
cit0023
cit0020
cit0021
Zhong XL (cit0010) 2020; 37
cit0008
cit0019
cit0009
cit0006
cit0017
cit0018
cit0004
cit0015
cit0005
Kavitha G (cit0007) 2022; 18
cit0016
cit0002
cit0013
cit0003
cit0014
References_xml – ident: cit0001
  doi: 10.1007/s11227-021-04036-4
– ident: cit0021
  doi: 10.1007/s11276-019-02059-7
– ident: cit0006
  doi: 10.1007/s00607-021-01001-0
– ident: cit0002
  doi: 10.1007/s11227-021-04113-8
– ident: cit0008
  doi: 10.1109/ACCESS.2022.3144015
– ident: cit0015
  doi: 10.1109/TCOMM.2021.3071448
– ident: cit0016
  doi: 10.1109/MNET.001.1900426
– ident: cit0018
  doi: 10.1007/s11227-021-04128-1
– volume: 37
  start-page: 278
  issue: 10
  year: 2020
  ident: cit0010
  publication-title: Comput Simul
– ident: cit0019
  doi: 10.1007/s11227-021-04092-w
– ident: cit0004
  doi: 10.1007/s10994-019-05840-z
– ident: cit0017
  doi: 10.1007/s11276-022-02928-8
– ident: cit0012
  doi: 10.1007/s11276-021-02871-0
– volume: 18
  start-page: 119
  issue: 1
  year: 2022
  ident: cit0007
  publication-title: J Mobile Multimedia
– ident: cit0013
  doi: 10.1109/TFUZZ.2020.2992180
– ident: cit0014
  doi: 10.1007/s11227-021-03708-5
– ident: cit0020
  doi: 10.1007/s11227-020-03410-y
– ident: cit0011
  doi: 10.1109/LCOMM.2020.3048995
– ident: cit0005
  doi: 10.1108/IJILT-09-2021-0144
– ident: cit0009
  doi: 10.1007/s11227-018-2574-4
– ident: cit0023
  doi: 10.1007/s11227-021-04303-4
– ident: cit0022
  doi: 10.1007/s11227-021-04034-6
– ident: cit0003
  doi: 10.1016/j.knosys.2021.107212
SSID ssj0001742199
Score 2.245397
Snippet Aiming at the defects that wireless sensor network is vulnerable to intrusion attacks and affects communication performance, a WSN intrusion detection method...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 115
SubjectTerms Deep data mining
genetic algorithm
intrusion detection method
k-means clustering
WSN
Title The WSN intrusion detection method based on deep data mining
URI https://www.tandfonline.com/doi/abs/10.1080/23742917.2022.2162195
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 2374-2925
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001742199
  issn: 2374-2917
  databaseCode: TFW
  dateStart: 20170102
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHry4PnF9kYPXru0kfQS8iLh4kEVwdfdW0jxgQeviFn-_kzTV3YN60HOZtMxkOvnCN_MRcp4mlQCD-Z0DVBGX2kYSeBbZnFkVI6QAr7H0dJePRsV0Ku4Dm3ARaJUOQ9t2UIT_V7vkltWiY8RdAEM8hzAD0R3AAJIM13Nt5lj6XWqOh5OvW5bcvUx4hbmcR86qa-P5bqGVArUyvnSp8Ax7__DJ22QrnDrpVbtNdsiaqXdJr1N0oCHB98gl7ho6eRjRWe2aMTBmVJvGs7Vq2opNU1f3NPVPzJw6hil98SoT--RxeDO-vo2CvkKkMIubSOYMmOGgYx0zxjBkVmcs1hZkCkUWG64KzTQG2TguhUmErqRUEnEtHnq0YgdkvX6tzSGhOlFCZ2ArZiXPeFylBgol3Dh7nlZW9QnvnFqqMHzcaWA8l0mYUdp5qHQeKoOH-mTwaTZvp2_8ZiCWI1Y2_trDtholJfvR9ugPtsdk0-nQex4vOyHrGCNzSjbUezNbvJ35PfkBSlzaEw
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60CnqxPrE-9-A1NdndvMCLiKVi7cVqewubfUBBY9Hg73dnk2h7UA96DrMJ88jsDDPfB3AWBnlKtY3vmNLc40IZT1AeeSZmRvq2pKCOY-lxEA-HyWSSzu_C4Fgl1tCmAopw_2oMbmxGNyNx55TZgs7WGba8o7RLg8geGC7DSmhzLeLnj3rjrz5LjK9LHcdczD0UaxZ5vjtpIUUtAJjOpZ5e-z8-ehM26osnuaw8ZQuWdLEN7YbUgdQxvgMX1nHI-H5IpgXuY1izEaVLN7BVkIpvmmDqU8Q90TOCQ6bk2RFN7MJD73p01fdqigVP2kAuPREzyjSnylc-Y8xazaiI-cpQEdIk8jWXiWLK2lnjOIUOUpULIYUtbe29R0m2B63ipdD7QFQgUxVRkzMjeMT9PNQ0kSki2vMwN7IDvNFqJmv8caTBeMqCGqa00VCGGspqDXWg-yk2qwA4fhNI502Wla7zYSqakoz9KHvwB9lTWOuP7gbZ4GZ4ewjrSEvvxnrZEbSsvfQxrMr3cvr2euIc9AM49d49
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFD7oFPHFecV5zYOvnW2S3sAXUYfiKAOn21tJc4GB1uGKv98kTXV7UB_0uZy0nEtPTvjyfQBnYVCkWOr6jjEuPMqE8himkadiorivRwpsNZae-nGWJeNxOnBowpmDVZoZWtVEEfZfbYp7KlSDiDvHRM9zeszQ0x3GXRxEer1wGVb01jkyST7sjb6OWWLzttRKzMXUM2bNPZ7vVlroUAv8pXOdp9f-h2_ehA237USXdZ5swZIst6HdSDogV-E7cKHTBo0eMjQpzW0MHTQkZGXhWiWq1aaRaXwC2SdyigzEFL1YmYldeOzdDK9uPSew4HFdxpXHYoKJpFj4wieE6JgpERFfKMxCnES-pDwRROgoSwOmkEEqCsY404Ot3vUITvagVb6Wch-QCHgqIqwKohiNqF-EEic8NXz2NCwU7wBtnJpzxz5uRDCe88CRlDYeyo2HcuehDnQ_zaY1_cZvBul8xPLKnnuoWqQkJz_aHvzB9hTWBte9vH-X3R_CutGkt5hecgQtHS55DKv8vZrM3k5sen4Ap_fc7w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+WSN+intrusion+detection+method+based+on+deep+data+mining&rft.jtitle=Journal+of+cyber+security&rft.au=Zhang%2C+Yiwei&rft.date=2023-07-03&rft.issn=2374-2917&rft.eissn=2374-2925&rft.volume=7&rft.issue=3&rft.spage=115&rft.epage=133&rft_id=info:doi/10.1080%2F23742917.2022.2162195&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_23742917_2022_2162195
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2374-2917&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2374-2917&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2374-2917&client=summon