The WSN intrusion detection method based on deep data mining
Aiming at the defects that wireless sensor network is vulnerable to intrusion attacks and affects communication performance, a WSN intrusion detection method based on deep data mining is presented. The network traffic capture tool is used to capture the data stream of the wireless sensor network, an...
Gespeichert in:
| Veröffentlicht in: | Journal of cyber security Jg. 7; H. 3; S. 115 - 133 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Taylor & Francis
03.07.2023
|
| Schlagworte: | |
| ISSN: | 2374-2917, 2374-2925 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Aiming at the defects that wireless sensor network is vulnerable to intrusion attacks and affects communication performance, a WSN intrusion detection method based on deep data mining is presented. The network traffic capture tool is used to capture the data stream of the wireless sensor network, and the captured data stream is cleaned and normalized. An improved deep sparse autoencoder is used to extract WSN intrusion features from the normalized data stream. The extracted intrusion features are taken as the initial data of K-means clustering, to optimize the k-means clustering algorithm (KMCA) by genetic algorithm. The reasonable initial center point searched by the genetic algorithm is taken as the input parameter of the improved KMCA. The proposed method can detect internal attacks, external attacks and other intrusion behaviors in wireless sensor networks, and the false detection rate is less than 1%. |
|---|---|
| AbstractList | Aiming at the defects that wireless sensor network is vulnerable to intrusion attacks and affects communication performance, a WSN intrusion detection method based on deep data mining is presented. The network traffic capture tool is used to capture the data stream of the wireless sensor network, and the captured data stream is cleaned and normalized. An improved deep sparse autoencoder is used to extract WSN intrusion features from the normalized data stream. The extracted intrusion features are taken as the initial data of K-means clustering, to optimize the k-means clustering algorithm (KMCA) by genetic algorithm. The reasonable initial center point searched by the genetic algorithm is taken as the input parameter of the improved KMCA. The proposed method can detect internal attacks, external attacks and other intrusion behaviors in wireless sensor networks, and the false detection rate is less than 1%. |
| Author | Zhang, Yiwei |
| Author_xml | – sequence: 1 givenname: Yiwei surname: Zhang fullname: Zhang, Yiwei email: yiwei_zhang00@163.com organization: Sichuan Modern Vocational College |
| BookMark | eNqFkE1LAzEQhoNUsNb-BGH_wNZk0u120YNS_IKiBysewzSZtZHdpCQR6b-3a6sHD3qalxmeF-Y5Zj3nHTF2KvhI8Ck_A1mOoRLlCDjACMQERFUcsH63z6GCoveTRXnEhjG-cc7FFhJV1WcXixVlL08PmXUpvEfrXWYokU5daimtvMmWGMlkXxdaZwYTZq111r2esMMam0jD_Ryw55vrxewunz_e3s-u5rkGKFKOpQRJYzDccCklkKjNRHJTAxYwnXAa66mRhrQmwXlJojJLRI2lkFBKo-WAFbteHXyMgWq1DrbFsFGCq86C-ragOgtqb2HLnf_itE3YvZYC2uZf-nJHW1f70OKHD41RCTeND3VAp21U8u-KT-gjduQ |
| CitedBy_id | crossref_primary_10_1080_23742917_2023_2239590 crossref_primary_10_1080_23742917_2024_2430037 |
| Cites_doi | 10.1007/s11227-021-04036-4 10.1007/s11276-019-02059-7 10.1007/s00607-021-01001-0 10.1007/s11227-021-04113-8 10.1109/ACCESS.2022.3144015 10.1109/TCOMM.2021.3071448 10.1109/MNET.001.1900426 10.1007/s11227-021-04128-1 10.1007/s11227-021-04092-w 10.1007/s10994-019-05840-z 10.1007/s11276-022-02928-8 10.1007/s11276-021-02871-0 10.1109/TFUZZ.2020.2992180 10.1007/s11227-021-03708-5 10.1007/s11227-020-03410-y 10.1109/LCOMM.2020.3048995 10.1108/IJILT-09-2021-0144 10.1007/s11227-018-2574-4 10.1007/s11227-021-04303-4 10.1007/s11227-021-04034-6 10.1016/j.knosys.2021.107212 |
| ContentType | Journal Article |
| Copyright | 2023 Informa UK Limited, trading as Taylor & Francis Group 2023 |
| Copyright_xml | – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023 |
| DBID | AAYXX CITATION |
| DOI | 10.1080/23742917.2022.2162195 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2374-2925 |
| EndPage | 133 |
| ExternalDocumentID | 10_1080_23742917_2022_2162195 2162195 |
| Genre | Research Article |
| GroupedDBID | 0BK 0R~ 30N AAGDL AAHIA AALDU AAMIU AAPUL AAQRR ABCCY ABJNI ABLIJ ABPAQ ABPEM ABXUL ABXYU ACGFS ADAHI ADFNY ADGTB ADMLS ADWHR AECIN AEEWU AEISY AFRVT AGDLA AIJEM AIYEW AKBVH ALMA_UNASSIGNED_HOLDINGS ALQZU APAHL AQTUD ARCSS BLEHA CCCUG DGEBU EBS H13 KYCEM LJTGL M4Z RNANH ROSJB RTWRZ SOJIQ TASJS TBQAZ TDBHL TEN TFL TFT TFW TTHFI TUROJ UK1 UK3 UK4 ZGOLN AAYXX CITATION |
| ID | FETCH-LOGICAL-c225t-a7323e42d0d03332e1fd630df2a52860e4c8d3decce1007e19dbaaca713273dc3 |
| IEDL.DBID | TFW |
| ISSN | 2374-2917 |
| IngestDate | Sat Nov 29 06:27:15 EST 2025 Tue Nov 18 21:09:46 EST 2025 Mon Oct 20 23:45:50 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c225t-a7323e42d0d03332e1fd630df2a52860e4c8d3decce1007e19dbaaca713273dc3 |
| PageCount | 19 |
| ParticipantIDs | crossref_primary_10_1080_23742917_2022_2162195 crossref_citationtrail_10_1080_23742917_2022_2162195 informaworld_taylorfrancis_310_1080_23742917_2022_2162195 |
| PublicationCentury | 2000 |
| PublicationDate | 07/03/2023 |
| PublicationDateYYYYMMDD | 2023-07-03 |
| PublicationDate_xml | – month: 07 year: 2023 text: 07/03/2023 day: 03 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of cyber security |
| PublicationYear | 2023 |
| Publisher | Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis |
| References | cit0011 cit0022 cit0001 cit0012 cit0023 cit0020 cit0021 Zhong XL (cit0010) 2020; 37 cit0008 cit0019 cit0009 cit0006 cit0017 cit0018 cit0004 cit0015 cit0005 Kavitha G (cit0007) 2022; 18 cit0016 cit0002 cit0013 cit0003 cit0014 |
| References_xml | – ident: cit0001 doi: 10.1007/s11227-021-04036-4 – ident: cit0021 doi: 10.1007/s11276-019-02059-7 – ident: cit0006 doi: 10.1007/s00607-021-01001-0 – ident: cit0002 doi: 10.1007/s11227-021-04113-8 – ident: cit0008 doi: 10.1109/ACCESS.2022.3144015 – ident: cit0015 doi: 10.1109/TCOMM.2021.3071448 – ident: cit0016 doi: 10.1109/MNET.001.1900426 – ident: cit0018 doi: 10.1007/s11227-021-04128-1 – volume: 37 start-page: 278 issue: 10 year: 2020 ident: cit0010 publication-title: Comput Simul – ident: cit0019 doi: 10.1007/s11227-021-04092-w – ident: cit0004 doi: 10.1007/s10994-019-05840-z – ident: cit0017 doi: 10.1007/s11276-022-02928-8 – ident: cit0012 doi: 10.1007/s11276-021-02871-0 – volume: 18 start-page: 119 issue: 1 year: 2022 ident: cit0007 publication-title: J Mobile Multimedia – ident: cit0013 doi: 10.1109/TFUZZ.2020.2992180 – ident: cit0014 doi: 10.1007/s11227-021-03708-5 – ident: cit0020 doi: 10.1007/s11227-020-03410-y – ident: cit0011 doi: 10.1109/LCOMM.2020.3048995 – ident: cit0005 doi: 10.1108/IJILT-09-2021-0144 – ident: cit0009 doi: 10.1007/s11227-018-2574-4 – ident: cit0023 doi: 10.1007/s11227-021-04303-4 – ident: cit0022 doi: 10.1007/s11227-021-04034-6 – ident: cit0003 doi: 10.1016/j.knosys.2021.107212 |
| SSID | ssj0001742199 |
| Score | 2.2452972 |
| Snippet | Aiming at the defects that wireless sensor network is vulnerable to intrusion attacks and affects communication performance, a WSN intrusion detection method... |
| SourceID | crossref informaworld |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 115 |
| SubjectTerms | Deep data mining genetic algorithm intrusion detection method k-means clustering WSN |
| Title | The WSN intrusion detection method based on deep data mining |
| URI | https://www.tandfonline.com/doi/abs/10.1080/23742917.2022.2162195 |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor and Francis Online Journals customDbUrl: eissn: 2374-2925 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001742199 issn: 2374-2917 databaseCode: TFW dateStart: 20170102 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5EPHixPrG-2IPXrcluuk3Ai4jFgxTBansLm90JFDQWG_z9zmw22h7Ug56TCWEemZnNN_Mxdk47sbSUIGwJSiSJ0SLL-lIUMf3ji1W_8ONjT3eD0SidTrP7gCZcBFgl9dBlsyjCf6spuE2xaBFxF1JhP4dtBnZ3UvZkrDHqaMwcUz-F5ng4-TplwTsbEkkSEiTVjvF896CVBLWyvnQp8Qw7__DK22wrVJ38qnGTHbYG1S7rtIwOPAT4HrtEr-GThxGfVTSMgTbjDmqP1qp4QzbNKe857q_AnBPClL94lol99ji8GV_fisCvICxGcS3MQEkFiXSRi5RSEuLSaRW5Upq-THUEiU2dcmhkICwFxJkrjLEG-1osepxVB2y9eq3gkHHbB2ot0byyxAIrMVYbnTrQThdYYMguS1ql5jYsHycOjOc8DjtKWw3lpKE8aKjLep9i82b7xm8C2bLF8tofe5QNR0mufpQ9-oPsMdskHnqP41UnbB1tBKdsw77Xs8XbmffJDwdl2PE |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED5BQYKF8hTl6YHVJbETN5FYEKIqomSh0G6RYztSJQgVRPx-fE4C7QAMMCcXRffI3Tl33wdwhphYgjFDVW44DQIpaByHjGY-_uPzeZi59bHHYS9Joskknt-FwbFK7KHzCijCfasxuPEwuhmJO2fcNnS2z7DtHWNd5gsbduEyrIQ21yJ-_qg__jpnsbdWNJIoRVGsWeT57kkLKWoBwHQu9fTb__HSm7BRF57ksvKULVgyxTa0G1IHUsf4DlxYxyHj-4RMC9zHsGYj2pRuYKsgFd80wdSnibtiZgSHTMmzI5rYhYf-9ehqQGuKBapsIJdU9jjjJmDa0x7nnBk_14J7OmcyZJHwTKAizbW1s8FxCuPHOpNSSdva2rpHK74HreKlMPtAVGiwu7QWZrmtsQKphBSRNkKLzNYYrANBo9VU1fjjSIPxlPo1TGmjoRQ1lNYa6kD3U2xWAXD8JhDPmywt3clHXtGUpPxH2YM_yJ7C2mB0N0yHN8ntIawjLb0b6-VH0LL2Msewqt7L6dvriXPQD-a_3Rs |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagIMRCeYry9MDqktiJm0gsCIhAVFElCu0WObYjVYJQ0Yjfz9lxoB2AAebkougeuTvnu_sQOjM7sTilmshCMxIEgpM4DinJffOPz2dhbsfHnvq9NI3G43jg0IQzB6s0PXRRL4qw32oT3FNVNIi4c8qgn4M2A7o7SrvU5xB14TJagdKZGycfJqOvYxa4tWaRNFLEiDVzPN89aSFDLewvncs8Sfsf3nkTbbiyE1_WfrKFlnS5jdoNpQN2Eb6DLsBt8OghxZPSTGOA0bDSlYVrlbhmm8Ym8Slsr-gpNhBT_GJpJnbRY3IzvLoljmCBSAjjiogeo0wHVHnKY4xR7ReKM08VVIQ04p4OZKSYAitrA6bQfqxyIaSAxhaqHiXZHmqVr6XeR1iG2vSWYF9aQIUVCMkFj5TmiudQYdAOChqlZtJtHzckGM-Z75aUNhrKjIYyp6EO6n6KTev1G78JxPMWyyp77lHUJCUZ-1H24A-yp2htcJ1k_bv0_hCtG056i-llR6gF5tLHaFW-V5PZ24l1zw9YAtvN |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+WSN+intrusion+detection+method+based+on+deep+data+mining&rft.jtitle=Journal+of+cyber+security&rft.au=Zhang%2C+Yiwei&rft.date=2023-07-03&rft.pub=Taylor+%26+Francis&rft.issn=2374-2917&rft.eissn=2374-2925&rft.volume=7&rft.issue=3&rft.spage=115&rft.epage=133&rft_id=info:doi/10.1080%2F23742917.2022.2162195&rft.externalDocID=2162195 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2374-2917&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2374-2917&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2374-2917&client=summon |