Nonlinear Unmixing of Hyperspectral Data via Deep Autoencoder Networks

Nonlinear spectral unmixing is an important and challenging problem in hyperspectral image processing. Classical nonlinear algorithms are usually derived based on specific assumptions on the nonlinearity. In recent years, deep learning shows its advantage in addressing general nonlinear problems. Ho...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE geoscience and remote sensing letters Ročník 16; číslo 9; s. 1467 - 1471
Hlavní autoři: Wang, Mou, Zhao, Min, Chen, Jie, Rahardja, Susanto
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.09.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1545-598X, 1558-0571
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Nonlinear spectral unmixing is an important and challenging problem in hyperspectral image processing. Classical nonlinear algorithms are usually derived based on specific assumptions on the nonlinearity. In recent years, deep learning shows its advantage in addressing general nonlinear problems. However, existing ways of using deep neural networks for unmixing are limited and restrictive. In this letter, we develop a novel blind hyperspectral unmixing scheme based on a deep autoencoder network. Both encoder and decoder of the network are carefully designed so that we can conveniently extract estimated endmembers and abundances simultaneously from the nonlinearly mixed data. Because an autoencoder is essentially an unsupervised algorithm, this scheme only relies on the current data and, therefore, does not require additional training. Experimental results validate the proposed scheme and show its superior performance over several existing algorithms.
AbstractList Nonlinear spectral unmixing is an important and challenging problem in hyperspectral image processing. Classical nonlinear algorithms are usually derived based on specific assumptions on the nonlinearity. In recent years, deep learning shows its advantage in addressing general nonlinear problems. However, existing ways of using deep neural networks for unmixing are limited and restrictive. In this letter, we develop a novel blind hyperspectral unmixing scheme based on a deep autoencoder network. Both encoder and decoder of the network are carefully designed so that we can conveniently extract estimated endmembers and abundances simultaneously from the nonlinearly mixed data. Because an autoencoder is essentially an unsupervised algorithm, this scheme only relies on the current data and, therefore, does not require additional training. Experimental results validate the proposed scheme and show its superior performance over several existing algorithms.
Author Rahardja, Susanto
Zhao, Min
Wang, Mou
Chen, Jie
Author_xml – sequence: 1
  givenname: Mou
  orcidid: 0000-0002-6476-2501
  surname: Wang
  fullname: Wang, Mou
  organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China
– sequence: 2
  givenname: Min
  surname: Zhao
  fullname: Zhao, Min
  organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China
– sequence: 3
  givenname: Jie
  orcidid: 0000-0003-2306-8860
  surname: Chen
  fullname: Chen, Jie
  email: dr.jie.chen@ieee.org
  organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China
– sequence: 4
  givenname: Susanto
  orcidid: 0000-0003-0831-6934
  surname: Rahardja
  fullname: Rahardja, Susanto
  organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China
BookMark eNp9kE1PwkAQhjcGEwH9AcZLE8_F_Wi7u0cCAiYEE5XEW7NsZ81i2a3bovLvbQPx4MHTO4f3mck8A9Rz3gFC1wSPCMHybjl_eh5RTOSISow5Y2eoT9JUxDjlpNfNSRqnUrxeoEFdbzGmiRC8j2Yr70rrQIVo7Xb227q3yJtocagg1BXoJqgymqpGRZ9WRVOAKhrvGw9O-wJCtILmy4f3-hKdG1XWcHXKIVrP7l8mi3j5OH-YjJexppQ1sVQs0QSAgGiTCVFsUsMztTE4KWSWcQpguBbSMBAiAU2FliwhhZSKC0PZEN0e91bBf-yhbvKt3wfXnswpFYxxiVPStvixpYOv6wAm17ZRjfWufceWOcF5Jy3vpOWdtPwkrSXJH7IKdqfC4V_m5shYAPjti_abLEvYD1xOeeM
CODEN IGRSBY
CitedBy_id crossref_primary_10_1109_TNNLS_2021_3082289
crossref_primary_10_1109_TGRS_2021_3064958
crossref_primary_10_1109_TGRS_2021_3121799
crossref_primary_10_1109_JSTARS_2024_3352080
crossref_primary_10_1109_JSTARS_2021_3126755
crossref_primary_10_1109_TGRS_2020_2982490
crossref_primary_10_1109_TGRS_2024_3422495
crossref_primary_10_1007_s12518_021_00385_0
crossref_primary_10_1109_TGRS_2021_3094884
crossref_primary_10_1016_j_wasman_2024_09_011
crossref_primary_10_1016_j_measurement_2021_110137
crossref_primary_10_1109_LGRS_2020_3011941
crossref_primary_10_1109_TSP_2021_3096806
crossref_primary_10_3389_fmars_2022_1027830
crossref_primary_10_1109_TGRS_2020_2992743
crossref_primary_10_3390_rs15133300
crossref_primary_10_1109_TGRS_2025_3535749
crossref_primary_10_1109_TGRS_2024_3393570
crossref_primary_10_1109_JSTARS_2022_3175257
crossref_primary_10_1109_TGRS_2025_3540378
crossref_primary_10_1016_j_rse_2021_112407
crossref_primary_10_1109_LGRS_2020_2987353
crossref_primary_10_1038_s41598_025_96023_5
crossref_primary_10_1109_JSTARS_2023_3323748
crossref_primary_10_3390_rs16050766
crossref_primary_10_1109_JSTARS_2024_3368286
crossref_primary_10_1109_TGRS_2024_3377472
crossref_primary_10_1016_j_saa_2023_122734
crossref_primary_10_1515_teme_2020_0008
crossref_primary_10_1109_TIP_2023_3266660
crossref_primary_10_1049_ipr2_12113
crossref_primary_10_1109_TGRS_2024_3399003
crossref_primary_10_1016_j_sigpro_2020_107672
crossref_primary_10_1109_JSTARS_2025_3527898
crossref_primary_10_1109_JSTARS_2025_3549768
crossref_primary_10_1109_TCDS_2022_3222350
crossref_primary_10_1186_s40494_020_00427_7
crossref_primary_10_3390_rs15041053
crossref_primary_10_1109_TCI_2023_3321985
crossref_primary_10_1109_TGRS_2024_3454818
crossref_primary_10_1109_LGRS_2021_3075138
crossref_primary_10_1140_epjp_s13360_024_05429_z
crossref_primary_10_1016_j_rse_2025_114657
crossref_primary_10_1109_TGRS_2022_3186480
crossref_primary_10_1080_01431161_2020_1724346
crossref_primary_10_1109_TGRS_2021_3107151
crossref_primary_10_1016_j_foodchem_2024_140486
crossref_primary_10_1371_journal_pone_0294537
crossref_primary_10_1109_LGRS_2022_3144327
crossref_primary_10_1109_TGRS_2022_3168712
crossref_primary_10_1080_01431161_2021_1949069
crossref_primary_10_1016_j_bspc_2022_104067
crossref_primary_10_1016_j_sigpro_2020_107949
crossref_primary_10_1109_JSTSP_2021_3052361
crossref_primary_10_1109_TGRS_2024_3418583
crossref_primary_10_1109_TGRS_2022_3152782
crossref_primary_10_1109_JSTARS_2025_3576281
crossref_primary_10_3390_rs14143341
crossref_primary_10_3390_rs17172968
crossref_primary_10_1109_TGRS_2022_3141387
crossref_primary_10_1109_TGRS_2025_3537171
crossref_primary_10_1109_JSTARS_2025_3584232
crossref_primary_10_3390_rs15245694
crossref_primary_10_1109_JSTARS_2021_3132283
crossref_primary_10_3390_plants11070836
crossref_primary_10_1109_JSTARS_2020_3039844
crossref_primary_10_1088_2632_2153_ad622f
crossref_primary_10_1109_TGRS_2021_3108540
crossref_primary_10_1109_TGRS_2024_3360714
crossref_primary_10_1080_01431161_2024_2408038
crossref_primary_10_1109_TGRS_2025_3551119
crossref_primary_10_1109_LGRS_2025_3545505
crossref_primary_10_1080_22797254_2023_2277213
crossref_primary_10_1007_s12551_022_00941_x
crossref_primary_10_3390_sym15040870
crossref_primary_10_3788_IRLA20250131
crossref_primary_10_3390_sym16111414
crossref_primary_10_1109_LGRS_2020_3005999
crossref_primary_10_3390_rs14184433
crossref_primary_10_1016_j_jag_2024_103864
crossref_primary_10_3390_rs16173149
crossref_primary_10_1080_01431161_2021_1933245
crossref_primary_10_1016_j_cosrev_2023_100584
crossref_primary_10_1016_j_sigpro_2023_109296
crossref_primary_10_1109_TGRS_2021_3098745
crossref_primary_10_1016_j_dsp_2023_103939
crossref_primary_10_1007_s12210_023_01174_0
crossref_primary_10_3390_jimaging5050052
crossref_primary_10_1109_TGRS_2022_3202490
crossref_primary_10_1016_j_rse_2022_113088
crossref_primary_10_3390_rs14205167
crossref_primary_10_3390_agriculture12010010
crossref_primary_10_3390_rs17050869
crossref_primary_10_1109_JSTARS_2021_3126664
crossref_primary_10_1088_2632_2153_adb937
crossref_primary_10_1109_TGRS_2023_3304484
crossref_primary_10_3390_rs17173126
crossref_primary_10_3390_s23115020
crossref_primary_10_1109_JSTARS_2021_3140154
crossref_primary_10_3390_rs15102619
crossref_primary_10_1109_JSTARS_2023_3308037
crossref_primary_10_1109_TGRS_2021_3077833
Cites_doi 10.1109/36.911111
10.1109/TGRS.2006.888466
10.1109/JSTARS.2012.2194696
10.1109/TGRS.2018.2862899
10.1109/TGRS.2004.839806
10.1117/12.366289
10.1109/78.790661
10.1109/TIP.2016.2627815
10.1109/IGARSS.2017.8126931
10.1109/LGRS.2018.2841400
10.1109/TGRS.2018.2864987
10.1109/TGRS.2011.2160950
10.1109/ACCESS.2018.2818280
10.1109/79.974727
10.1109/TSP.2012.2222390
10.1029/JB086iB04p03039
10.1109/TGRS.2015.2453915
10.1109/TGRS.2010.2098414
10.1109/TGRS.2018.2868690
10.1109/TGRS.2018.2849692
10.1109/IGARSS.2017.8126930
10.1109/LGRS.2018.2857804
10.1109/TGRS.2016.2580702
10.1109/TIP.2010.2042993
10.1109/WHISPERS.2015.8075378
10.1109/TIP.2014.2314022
10.1109/LGRS.2007.895727
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
DOI 10.1109/LGRS.2019.2900733
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1558-0571
EndPage 1471
ExternalDocumentID 10_1109_LGRS_2019_2900733
8667664
Genre orig-research
GrantInformation_xml – fundername: NSF of Shenzhen
  grantid: JCYJ2017030155315873
– fundername: National Natural Science Foundation of China
  grantid: 61671382; 61811530283
  funderid: 10.13039/501100001809
– fundername: 111 Project
  grantid: B18041
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
~02
AAYXX
CITATION
7SC
7SP
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c223t-9a34c1ee1e84c1388db5f76abf04d96672eef7c89f3e884ec28c9341d99a78f23
IEDL.DBID RIE
ISICitedReferencesCount 132
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000484210100026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-598X
IngestDate Mon Sep 29 16:40:41 EDT 2025
Tue Nov 18 22:49:32 EST 2025
Sat Nov 29 05:53:58 EST 2025
Wed Aug 27 02:46:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c223t-9a34c1ee1e84c1388db5f76abf04d96672eef7c89f3e884ec28c9341d99a78f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2306-8860
0000-0002-6476-2501
0000-0003-0831-6934
PQID 2283379051
PQPubID 75725
PageCount 5
ParticipantIDs proquest_journals_2283379051
crossref_citationtrail_10_1109_LGRS_2019_2900733
crossref_primary_10_1109_LGRS_2019_2900733
ieee_primary_8667664
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE geoscience and remote sensing letters
PublicationTitleAbbrev LGRS
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
heize (ref8) 2001; 39
ref24
ref23
ref26
ref25
ref20
ref22
ref21
winter (ref3) 1999; 3753
ref27
ref7
ref9
ref4
ref6
ref5
References_xml – volume: 39
  start-page: 529
  year: 2001
  ident: ref8
  article-title: Fully constrained least squares linear mixture analysis for material quantification in hyperspectral imagery
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/36.911111
– ident: ref5
  doi: 10.1109/TGRS.2006.888466
– ident: ref1
  doi: 10.1109/JSTARS.2012.2194696
– ident: ref12
  doi: 10.1109/TGRS.2018.2862899
– ident: ref4
  doi: 10.1109/TGRS.2004.839806
– volume: 3753
  start-page: 266
  year: 1999
  ident: ref3
  article-title: N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data
  publication-title: Proc SPIE
  doi: 10.1117/12.366289
– ident: ref23
  doi: 10.1109/78.790661
– ident: ref27
  doi: 10.1109/TIP.2016.2627815
– ident: ref18
  doi: 10.1109/IGARSS.2017.8126931
– ident: ref19
  doi: 10.1109/LGRS.2018.2841400
– ident: ref13
  doi: 10.1109/TGRS.2018.2864987
– ident: ref15
  doi: 10.1109/TGRS.2011.2160950
– ident: ref22
  doi: 10.1109/ACCESS.2018.2818280
– ident: ref2
  doi: 10.1109/79.974727
– ident: ref11
  doi: 10.1109/TSP.2012.2222390
– ident: ref26
  doi: 10.1029/JB086iB04p03039
– ident: ref25
  doi: 10.1109/TGRS.2015.2453915
– ident: ref10
  doi: 10.1109/TGRS.2010.2098414
– ident: ref20
  doi: 10.1109/TGRS.2018.2868690
– ident: ref14
  doi: 10.1109/TGRS.2018.2849692
– ident: ref17
  doi: 10.1109/IGARSS.2017.8126930
– ident: ref16
  doi: 10.1109/LGRS.2018.2857804
– ident: ref6
  doi: 10.1109/TGRS.2016.2580702
– ident: ref9
  doi: 10.1109/TIP.2010.2042993
– ident: ref21
  doi: 10.1109/WHISPERS.2015.8075378
– ident: ref24
  doi: 10.1109/TIP.2014.2314022
– ident: ref7
  doi: 10.1109/LGRS.2007.895727
SSID ssj0024887
Score 2.5712016
Snippet Nonlinear spectral unmixing is an important and challenging problem in hyperspectral image processing. Classical nonlinear algorithms are usually derived based...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1467
SubjectTerms Algorithms
Artificial neural networks
Autoencoder network
Coders
Current data
Decoding
Deep learning
Hyperspectral imaging
Image processing
Machine learning
Neural networks
nonlinear spectral unmixing
Nonlinear systems
Nonlinearity
Signal processing algorithms
Training
Title Nonlinear Unmixing of Hyperspectral Data via Deep Autoencoder Networks
URI https://ieeexplore.ieee.org/document/8667664
https://www.proquest.com/docview/2283379051
Volume 16
WOSCitedRecordID wos000484210100026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0571
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024887
  issn: 1545-598X
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH64oejFH1Nx_iIHT2K1a7vm5TjUbQcZog52K1nyigPdRteJ_vcmaTcRRfDUHJIQ3mvz8prvfR_AGWqKQ9JDj0di6EUNP_UENQNP-QFJk3HoOFRObIL3ejgYiPsVuFjWwhCRA5_RpW26u3w9UXP7q-wKLSAzjipQ4TwuarW-ePXQieHZE4HXFDgobzAbvri66zw8WhCXuAyEEyn8FoOcqMqPndiFl_bW_xa2DZvlMZK1Cr_vwAqNa7BeKpo_f9RgreMkez92od0r2DBkxvrj19G7iVVskrKuSUCLOsvMTHQjc8neRpLdEE1Za55PLMGlpoz1Cpz4bA_67dun665Xqid4yoT83BMyjFSDqEFoniGiHjZTHsth6kfaJDk8IEq5QpGGhBiRClAJE9O0EJJjGoT7UB1PxnQADC2WDYUmDCjCNJZmHyXpa9nUWoac18Ff2DNRJbW4Vbh4SVyK4YvEuiCxLkhKF9ThfDlkWvBq_NV519p82bE0dx2OF05Lyi9vllg6n9Cxjh3-PuoINuzcBU7sGKp5NqcTWFVv-WiWnbqX6hMLNsk_
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xCi7siLL6wAkRSLOOjwgoRZQIsUi9Ra49EZWgRWla0b_HdkIRAiFxSg62E83EHk_85j2AQ1QU-aQ6ThzwjhPU3czhFHqOdD0SOuNQkS-t2EScJNhu87spOJ7UwhCRBZ_Ribm1Z_mqL4fmV9kpGkBmFEzDrFHOCstqrS9mPbRyeGZP4IQc29UZZt3lp62r-wcD4-InHrcyhd-ikJVV-bEW2wDTWP7fq63AUrWRZGel51dhinprsFBpmj-P12D-yor2jtehkZR8GCJnT73X7ruOVqyfsaZOQctKy1wPdCEKwUZdwS6I3tjZsOgbiktFOUtKpPhgA54al4_nTafST3CkDvqFw4UfyDpRnVBffUTVCbM4Ep3MDZROc2KPKIsl8swnxICkh5LrqKY4FzFmnr8JM71-j7aAoUGzIVeEHgWYRUKvpCRcJUKlhB_HNXA_7ZnKilzcaFy8pDbJcHlqXJAaF6SVC2pwNOnyVjJr_NV43dh80rAydw12P52WVnNvkBpCH9_yjm3_3usAFpqPt620dZ3c7MCieU6JGtuFmSIf0h7MyVHRHeT79gP7ALeIzIo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+Unmixing+of+Hyperspectral+Data+via+Deep+Autoencoder+Networks&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Wang%2C+Mou&rft.au=Zhao%2C+Min&rft.au=Chen%2C+Jie&rft.au=Rahardja%2C+Susanto&rft.date=2019-09-01&rft.pub=IEEE&rft.issn=1545-598X&rft.volume=16&rft.issue=9&rft.spage=1467&rft.epage=1471&rft_id=info:doi/10.1109%2FLGRS.2019.2900733&rft.externalDocID=8667664
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon