Nonlinear Unmixing of Hyperspectral Data via Deep Autoencoder Networks
Nonlinear spectral unmixing is an important and challenging problem in hyperspectral image processing. Classical nonlinear algorithms are usually derived based on specific assumptions on the nonlinearity. In recent years, deep learning shows its advantage in addressing general nonlinear problems. Ho...
Uloženo v:
| Vydáno v: | IEEE geoscience and remote sensing letters Ročník 16; číslo 9; s. 1467 - 1471 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.09.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1545-598X, 1558-0571 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Nonlinear spectral unmixing is an important and challenging problem in hyperspectral image processing. Classical nonlinear algorithms are usually derived based on specific assumptions on the nonlinearity. In recent years, deep learning shows its advantage in addressing general nonlinear problems. However, existing ways of using deep neural networks for unmixing are limited and restrictive. In this letter, we develop a novel blind hyperspectral unmixing scheme based on a deep autoencoder network. Both encoder and decoder of the network are carefully designed so that we can conveniently extract estimated endmembers and abundances simultaneously from the nonlinearly mixed data. Because an autoencoder is essentially an unsupervised algorithm, this scheme only relies on the current data and, therefore, does not require additional training. Experimental results validate the proposed scheme and show its superior performance over several existing algorithms. |
|---|---|
| AbstractList | Nonlinear spectral unmixing is an important and challenging problem in hyperspectral image processing. Classical nonlinear algorithms are usually derived based on specific assumptions on the nonlinearity. In recent years, deep learning shows its advantage in addressing general nonlinear problems. However, existing ways of using deep neural networks for unmixing are limited and restrictive. In this letter, we develop a novel blind hyperspectral unmixing scheme based on a deep autoencoder network. Both encoder and decoder of the network are carefully designed so that we can conveniently extract estimated endmembers and abundances simultaneously from the nonlinearly mixed data. Because an autoencoder is essentially an unsupervised algorithm, this scheme only relies on the current data and, therefore, does not require additional training. Experimental results validate the proposed scheme and show its superior performance over several existing algorithms. |
| Author | Rahardja, Susanto Zhao, Min Wang, Mou Chen, Jie |
| Author_xml | – sequence: 1 givenname: Mou orcidid: 0000-0002-6476-2501 surname: Wang fullname: Wang, Mou organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China – sequence: 2 givenname: Min surname: Zhao fullname: Zhao, Min organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China – sequence: 3 givenname: Jie orcidid: 0000-0003-2306-8860 surname: Chen fullname: Chen, Jie email: dr.jie.chen@ieee.org organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China – sequence: 4 givenname: Susanto orcidid: 0000-0003-0831-6934 surname: Rahardja fullname: Rahardja, Susanto organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China |
| BookMark | eNp9kE1PwkAQhjcGEwH9AcZLE8_F_Wi7u0cCAiYEE5XEW7NsZ81i2a3bovLvbQPx4MHTO4f3mck8A9Rz3gFC1wSPCMHybjl_eh5RTOSISow5Y2eoT9JUxDjlpNfNSRqnUrxeoEFdbzGmiRC8j2Yr70rrQIVo7Xb227q3yJtocagg1BXoJqgymqpGRZ9WRVOAKhrvGw9O-wJCtILmy4f3-hKdG1XWcHXKIVrP7l8mi3j5OH-YjJexppQ1sVQs0QSAgGiTCVFsUsMztTE4KWSWcQpguBbSMBAiAU2FliwhhZSKC0PZEN0e91bBf-yhbvKt3wfXnswpFYxxiVPStvixpYOv6wAm17ZRjfWufceWOcF5Jy3vpOWdtPwkrSXJH7IKdqfC4V_m5shYAPjti_abLEvYD1xOeeM |
| CODEN | IGRSBY |
| CitedBy_id | crossref_primary_10_1109_TNNLS_2021_3082289 crossref_primary_10_1109_TGRS_2021_3064958 crossref_primary_10_1109_TGRS_2021_3121799 crossref_primary_10_1109_JSTARS_2024_3352080 crossref_primary_10_1109_JSTARS_2021_3126755 crossref_primary_10_1109_TGRS_2020_2982490 crossref_primary_10_1109_TGRS_2024_3422495 crossref_primary_10_1007_s12518_021_00385_0 crossref_primary_10_1109_TGRS_2021_3094884 crossref_primary_10_1016_j_wasman_2024_09_011 crossref_primary_10_1016_j_measurement_2021_110137 crossref_primary_10_1109_LGRS_2020_3011941 crossref_primary_10_1109_TSP_2021_3096806 crossref_primary_10_3389_fmars_2022_1027830 crossref_primary_10_1109_TGRS_2020_2992743 crossref_primary_10_3390_rs15133300 crossref_primary_10_1109_TGRS_2025_3535749 crossref_primary_10_1109_TGRS_2024_3393570 crossref_primary_10_1109_JSTARS_2022_3175257 crossref_primary_10_1109_TGRS_2025_3540378 crossref_primary_10_1016_j_rse_2021_112407 crossref_primary_10_1109_LGRS_2020_2987353 crossref_primary_10_1038_s41598_025_96023_5 crossref_primary_10_1109_JSTARS_2023_3323748 crossref_primary_10_3390_rs16050766 crossref_primary_10_1109_JSTARS_2024_3368286 crossref_primary_10_1109_TGRS_2024_3377472 crossref_primary_10_1016_j_saa_2023_122734 crossref_primary_10_1515_teme_2020_0008 crossref_primary_10_1109_TIP_2023_3266660 crossref_primary_10_1049_ipr2_12113 crossref_primary_10_1109_TGRS_2024_3399003 crossref_primary_10_1016_j_sigpro_2020_107672 crossref_primary_10_1109_JSTARS_2025_3527898 crossref_primary_10_1109_JSTARS_2025_3549768 crossref_primary_10_1109_TCDS_2022_3222350 crossref_primary_10_1186_s40494_020_00427_7 crossref_primary_10_3390_rs15041053 crossref_primary_10_1109_TCI_2023_3321985 crossref_primary_10_1109_TGRS_2024_3454818 crossref_primary_10_1109_LGRS_2021_3075138 crossref_primary_10_1140_epjp_s13360_024_05429_z crossref_primary_10_1016_j_rse_2025_114657 crossref_primary_10_1109_TGRS_2022_3186480 crossref_primary_10_1080_01431161_2020_1724346 crossref_primary_10_1109_TGRS_2021_3107151 crossref_primary_10_1016_j_foodchem_2024_140486 crossref_primary_10_1371_journal_pone_0294537 crossref_primary_10_1109_LGRS_2022_3144327 crossref_primary_10_1109_TGRS_2022_3168712 crossref_primary_10_1080_01431161_2021_1949069 crossref_primary_10_1016_j_bspc_2022_104067 crossref_primary_10_1016_j_sigpro_2020_107949 crossref_primary_10_1109_JSTSP_2021_3052361 crossref_primary_10_1109_TGRS_2024_3418583 crossref_primary_10_1109_TGRS_2022_3152782 crossref_primary_10_1109_JSTARS_2025_3576281 crossref_primary_10_3390_rs14143341 crossref_primary_10_3390_rs17172968 crossref_primary_10_1109_TGRS_2022_3141387 crossref_primary_10_1109_TGRS_2025_3537171 crossref_primary_10_1109_JSTARS_2025_3584232 crossref_primary_10_3390_rs15245694 crossref_primary_10_1109_JSTARS_2021_3132283 crossref_primary_10_3390_plants11070836 crossref_primary_10_1109_JSTARS_2020_3039844 crossref_primary_10_1088_2632_2153_ad622f crossref_primary_10_1109_TGRS_2021_3108540 crossref_primary_10_1109_TGRS_2024_3360714 crossref_primary_10_1080_01431161_2024_2408038 crossref_primary_10_1109_TGRS_2025_3551119 crossref_primary_10_1109_LGRS_2025_3545505 crossref_primary_10_1080_22797254_2023_2277213 crossref_primary_10_1007_s12551_022_00941_x crossref_primary_10_3390_sym15040870 crossref_primary_10_3788_IRLA20250131 crossref_primary_10_3390_sym16111414 crossref_primary_10_1109_LGRS_2020_3005999 crossref_primary_10_3390_rs14184433 crossref_primary_10_1016_j_jag_2024_103864 crossref_primary_10_3390_rs16173149 crossref_primary_10_1080_01431161_2021_1933245 crossref_primary_10_1016_j_cosrev_2023_100584 crossref_primary_10_1016_j_sigpro_2023_109296 crossref_primary_10_1109_TGRS_2021_3098745 crossref_primary_10_1016_j_dsp_2023_103939 crossref_primary_10_1007_s12210_023_01174_0 crossref_primary_10_3390_jimaging5050052 crossref_primary_10_1109_TGRS_2022_3202490 crossref_primary_10_1016_j_rse_2022_113088 crossref_primary_10_3390_rs14205167 crossref_primary_10_3390_agriculture12010010 crossref_primary_10_3390_rs17050869 crossref_primary_10_1109_JSTARS_2021_3126664 crossref_primary_10_1088_2632_2153_adb937 crossref_primary_10_1109_TGRS_2023_3304484 crossref_primary_10_3390_rs17173126 crossref_primary_10_3390_s23115020 crossref_primary_10_1109_JSTARS_2021_3140154 crossref_primary_10_3390_rs15102619 crossref_primary_10_1109_JSTARS_2023_3308037 crossref_primary_10_1109_TGRS_2021_3077833 |
| Cites_doi | 10.1109/36.911111 10.1109/TGRS.2006.888466 10.1109/JSTARS.2012.2194696 10.1109/TGRS.2018.2862899 10.1109/TGRS.2004.839806 10.1117/12.366289 10.1109/78.790661 10.1109/TIP.2016.2627815 10.1109/IGARSS.2017.8126931 10.1109/LGRS.2018.2841400 10.1109/TGRS.2018.2864987 10.1109/TGRS.2011.2160950 10.1109/ACCESS.2018.2818280 10.1109/79.974727 10.1109/TSP.2012.2222390 10.1029/JB086iB04p03039 10.1109/TGRS.2015.2453915 10.1109/TGRS.2010.2098414 10.1109/TGRS.2018.2868690 10.1109/TGRS.2018.2849692 10.1109/IGARSS.2017.8126930 10.1109/LGRS.2018.2857804 10.1109/TGRS.2016.2580702 10.1109/TIP.2010.2042993 10.1109/WHISPERS.2015.8075378 10.1109/TIP.2014.2314022 10.1109/LGRS.2007.895727 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
| DOI | 10.1109/LGRS.2019.2900733 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology |
| EISSN | 1558-0571 |
| EndPage | 1471 |
| ExternalDocumentID | 10_1109_LGRS_2019_2900733 8667664 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: NSF of Shenzhen grantid: JCYJ2017030155315873 – fundername: National Natural Science Foundation of China grantid: 61671382; 61811530283 funderid: 10.13039/501100001809 – fundername: 111 Project grantid: B18041 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS ~02 AAYXX CITATION 7SC 7SP 7TG 7UA 8FD C1K F1W FR3 H8D H96 JQ2 KL. KR7 L.G L7M L~C L~D |
| ID | FETCH-LOGICAL-c223t-9a34c1ee1e84c1388db5f76abf04d96672eef7c89f3e884ec28c9341d99a78f23 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 132 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000484210100026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-598X |
| IngestDate | Mon Sep 29 16:40:41 EDT 2025 Tue Nov 18 22:49:32 EST 2025 Sat Nov 29 05:53:58 EST 2025 Wed Aug 27 02:46:12 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c223t-9a34c1ee1e84c1388db5f76abf04d96672eef7c89f3e884ec28c9341d99a78f23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2306-8860 0000-0002-6476-2501 0000-0003-0831-6934 |
| PQID | 2283379051 |
| PQPubID | 75725 |
| PageCount | 5 |
| ParticipantIDs | proquest_journals_2283379051 crossref_citationtrail_10_1109_LGRS_2019_2900733 crossref_primary_10_1109_LGRS_2019_2900733 ieee_primary_8667664 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-09-01 |
| PublicationDateYYYYMMDD | 2019-09-01 |
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE geoscience and remote sensing letters |
| PublicationTitleAbbrev | LGRS |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 heize (ref8) 2001; 39 ref24 ref23 ref26 ref25 ref20 ref22 ref21 winter (ref3) 1999; 3753 ref27 ref7 ref9 ref4 ref6 ref5 |
| References_xml | – volume: 39 start-page: 529 year: 2001 ident: ref8 article-title: Fully constrained least squares linear mixture analysis for material quantification in hyperspectral imagery publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/36.911111 – ident: ref5 doi: 10.1109/TGRS.2006.888466 – ident: ref1 doi: 10.1109/JSTARS.2012.2194696 – ident: ref12 doi: 10.1109/TGRS.2018.2862899 – ident: ref4 doi: 10.1109/TGRS.2004.839806 – volume: 3753 start-page: 266 year: 1999 ident: ref3 article-title: N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data publication-title: Proc SPIE doi: 10.1117/12.366289 – ident: ref23 doi: 10.1109/78.790661 – ident: ref27 doi: 10.1109/TIP.2016.2627815 – ident: ref18 doi: 10.1109/IGARSS.2017.8126931 – ident: ref19 doi: 10.1109/LGRS.2018.2841400 – ident: ref13 doi: 10.1109/TGRS.2018.2864987 – ident: ref15 doi: 10.1109/TGRS.2011.2160950 – ident: ref22 doi: 10.1109/ACCESS.2018.2818280 – ident: ref2 doi: 10.1109/79.974727 – ident: ref11 doi: 10.1109/TSP.2012.2222390 – ident: ref26 doi: 10.1029/JB086iB04p03039 – ident: ref25 doi: 10.1109/TGRS.2015.2453915 – ident: ref10 doi: 10.1109/TGRS.2010.2098414 – ident: ref20 doi: 10.1109/TGRS.2018.2868690 – ident: ref14 doi: 10.1109/TGRS.2018.2849692 – ident: ref17 doi: 10.1109/IGARSS.2017.8126930 – ident: ref16 doi: 10.1109/LGRS.2018.2857804 – ident: ref6 doi: 10.1109/TGRS.2016.2580702 – ident: ref9 doi: 10.1109/TIP.2010.2042993 – ident: ref21 doi: 10.1109/WHISPERS.2015.8075378 – ident: ref24 doi: 10.1109/TIP.2014.2314022 – ident: ref7 doi: 10.1109/LGRS.2007.895727 |
| SSID | ssj0024887 |
| Score | 2.5712016 |
| Snippet | Nonlinear spectral unmixing is an important and challenging problem in hyperspectral image processing. Classical nonlinear algorithms are usually derived based... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1467 |
| SubjectTerms | Algorithms Artificial neural networks Autoencoder network Coders Current data Decoding Deep learning Hyperspectral imaging Image processing Machine learning Neural networks nonlinear spectral unmixing Nonlinear systems Nonlinearity Signal processing algorithms Training |
| Title | Nonlinear Unmixing of Hyperspectral Data via Deep Autoencoder Networks |
| URI | https://ieeexplore.ieee.org/document/8667664 https://www.proquest.com/docview/2283379051 |
| Volume | 16 |
| WOSCitedRecordID | wos000484210100026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0571 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024887 issn: 1545-598X databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH64oejFH1Nx_iIHT2K1a7vm5TjUbQcZog52K1nyigPdRteJ_vcmaTcRRfDUHJIQ3mvz8prvfR_AGWqKQ9JDj0di6EUNP_UENQNP-QFJk3HoOFRObIL3ejgYiPsVuFjWwhCRA5_RpW26u3w9UXP7q-wKLSAzjipQ4TwuarW-ePXQieHZE4HXFDgobzAbvri66zw8WhCXuAyEEyn8FoOcqMqPndiFl_bW_xa2DZvlMZK1Cr_vwAqNa7BeKpo_f9RgreMkez92od0r2DBkxvrj19G7iVVskrKuSUCLOsvMTHQjc8neRpLdEE1Za55PLMGlpoz1Cpz4bA_67dun665Xqid4yoT83BMyjFSDqEFoniGiHjZTHsth6kfaJDk8IEq5QpGGhBiRClAJE9O0EJJjGoT7UB1PxnQADC2WDYUmDCjCNJZmHyXpa9nUWoac18Ff2DNRJbW4Vbh4SVyK4YvEuiCxLkhKF9ThfDlkWvBq_NV519p82bE0dx2OF05Lyi9vllg6n9Cxjh3-PuoINuzcBU7sGKp5NqcTWFVv-WiWnbqX6hMLNsk_ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xCi7siLL6wAkRSLOOjwgoRZQIsUi9Ra49EZWgRWla0b_HdkIRAiFxSg62E83EHk_85j2AQ1QU-aQ6ThzwjhPU3czhFHqOdD0SOuNQkS-t2EScJNhu87spOJ7UwhCRBZ_Ribm1Z_mqL4fmV9kpGkBmFEzDrFHOCstqrS9mPbRyeGZP4IQc29UZZt3lp62r-wcD4-InHrcyhd-ikJVV-bEW2wDTWP7fq63AUrWRZGel51dhinprsFBpmj-P12D-yor2jtehkZR8GCJnT73X7ruOVqyfsaZOQctKy1wPdCEKwUZdwS6I3tjZsOgbiktFOUtKpPhgA54al4_nTafST3CkDvqFw4UfyDpRnVBffUTVCbM4Ep3MDZROc2KPKIsl8swnxICkh5LrqKY4FzFmnr8JM71-j7aAoUGzIVeEHgWYRUKvpCRcJUKlhB_HNXA_7ZnKilzcaFy8pDbJcHlqXJAaF6SVC2pwNOnyVjJr_NV43dh80rAydw12P52WVnNvkBpCH9_yjm3_3usAFpqPt620dZ3c7MCieU6JGtuFmSIf0h7MyVHRHeT79gP7ALeIzIo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+Unmixing+of+Hyperspectral+Data+via+Deep+Autoencoder+Networks&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Wang%2C+Mou&rft.au=Zhao%2C+Min&rft.au=Chen%2C+Jie&rft.au=Rahardja%2C+Susanto&rft.date=2019-09-01&rft.pub=IEEE&rft.issn=1545-598X&rft.volume=16&rft.issue=9&rft.spage=1467&rft.epage=1471&rft_id=info:doi/10.1109%2FLGRS.2019.2900733&rft.externalDocID=8667664 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon |