Nonlinear Unmixing of Hyperspectral Data via Deep Autoencoder Networks

Nonlinear spectral unmixing is an important and challenging problem in hyperspectral image processing. Classical nonlinear algorithms are usually derived based on specific assumptions on the nonlinearity. In recent years, deep learning shows its advantage in addressing general nonlinear problems. Ho...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE geoscience and remote sensing letters Ročník 16; číslo 9; s. 1467 - 1471
Hlavní autoři: Wang, Mou, Zhao, Min, Chen, Jie, Rahardja, Susanto
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.09.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1545-598X, 1558-0571
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Nonlinear spectral unmixing is an important and challenging problem in hyperspectral image processing. Classical nonlinear algorithms are usually derived based on specific assumptions on the nonlinearity. In recent years, deep learning shows its advantage in addressing general nonlinear problems. However, existing ways of using deep neural networks for unmixing are limited and restrictive. In this letter, we develop a novel blind hyperspectral unmixing scheme based on a deep autoencoder network. Both encoder and decoder of the network are carefully designed so that we can conveniently extract estimated endmembers and abundances simultaneously from the nonlinearly mixed data. Because an autoencoder is essentially an unsupervised algorithm, this scheme only relies on the current data and, therefore, does not require additional training. Experimental results validate the proposed scheme and show its superior performance over several existing algorithms.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1545-598X
1558-0571
DOI:10.1109/LGRS.2019.2900733