Robust H∞ control for fractional order singular systems 0 < α < 1 with uncertainty

This article studies robust H∞$$ {H}_{\infty } $$ control for fractional order singular systems (FOSS) 0<α<1$$ 0<\alpha <1 $$ with uncertainty. First, the condition based on the linear matrix inequality (LMI) is obtained for fractional order systems with 0<α<1$$ 0<\alpha <1 $...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimal control applications & methods Jg. 44; H. 1; S. 332 - 348
Hauptverfasser: Li, Bingxin, Zhao, Xin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Glasgow Wiley Subscription Services, Inc 01.01.2023
Schlagworte:
ISSN:0143-2087, 1099-1514
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article studies robust H∞$$ {H}_{\infty } $$ control for fractional order singular systems (FOSS) 0<α<1$$ 0<\alpha <1 $$ with uncertainty. First, the condition based on the linear matrix inequality (LMI) is obtained for fractional order systems with 0<α<1$$ 0<\alpha <1 $$ in Corollary 1. Compared with existing results, by using two matrices to replace the complex matrix, the condition is easier to solve. Based on Corollary 1, the condition of H∞$$ {H}_{\infty } $$ control based on non‐strict LMI for FOSS without uncertainty is proposed. The strict LMI‐based conditions of H∞$$ {H}_{\infty } $$ control are improved to overcome the equality constraints. Finally, the LMI‐based conditions of robust H∞$$ {H}_{\infty } $$ control are proposed for FOSS. Four examples are shown to illustrate the effectiveness of the method.
Bibliographie:Funding information
National Key R&D Program of China, Grant/Award Number: 2018YFB1304905; National Natural Science Foundation of China, Grant/Award Numbers: U1813210; 62027812
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0143-2087
1099-1514
DOI:10.1002/oca.2939