Decision problems for linear recurrences involving arbitrary real numbers

We study the decidability of the Skolem Problem, the Positivity Problem, and the Ultimate Positivity Problem for linear recurrences with real number initial values and real number coefficients in the bit-model of real computation. We show that for each problem there exists a correct partial algorith...

Full description

Saved in:
Bibliographic Details
Published in:Logical methods in computer science Vol. 17, Issue 3
Main Author: Neumann, Eike
Format: Journal Article
Language:English
Published: Logical Methods in Computer Science e.V 10.08.2021
Subjects:
ISSN:1860-5974, 1860-5974
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study the decidability of the Skolem Problem, the Positivity Problem, and the Ultimate Positivity Problem for linear recurrences with real number initial values and real number coefficients in the bit-model of real computation. We show that for each problem there exists a correct partial algorithm which halts for all problem instances for which the answer is locally constant, thus establishing that all three problems are as close to decidable as one can expect them to be in this setting. We further show that the algorithms for the Positivity Problem and the Ultimate Positivity Problem halt on almost every instance with respect to the usual Lebesgue measure on Euclidean space. In comparison, the analogous problems for exact rational or real algebraic coefficients are known to be decidable only for linear recurrences of fairly low order.
ISSN:1860-5974
1860-5974
DOI:10.46298/lmcs-17(3:16)2021