Decision problems for linear recurrences involving arbitrary real numbers

We study the decidability of the Skolem Problem, the Positivity Problem, and the Ultimate Positivity Problem for linear recurrences with real number initial values and real number coefficients in the bit-model of real computation. We show that for each problem there exists a correct partial algorith...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Logical methods in computer science Ročník 17, Issue 3
Hlavný autor: Neumann, Eike
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Logical Methods in Computer Science e.V 10.08.2021
Predmet:
ISSN:1860-5974, 1860-5974
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We study the decidability of the Skolem Problem, the Positivity Problem, and the Ultimate Positivity Problem for linear recurrences with real number initial values and real number coefficients in the bit-model of real computation. We show that for each problem there exists a correct partial algorithm which halts for all problem instances for which the answer is locally constant, thus establishing that all three problems are as close to decidable as one can expect them to be in this setting. We further show that the algorithms for the Positivity Problem and the Ultimate Positivity Problem halt on almost every instance with respect to the usual Lebesgue measure on Euclidean space. In comparison, the analogous problems for exact rational or real algebraic coefficients are known to be decidable only for linear recurrences of fairly low order.
ISSN:1860-5974
1860-5974
DOI:10.46298/lmcs-17(3:16)2021