Distributed Resource Allocation for Human-Autonomy Teaming With Human Preference Uncertainty
This letter investigates distributed resource allocation involving multiple autonomous agents and multiple humans, focusing on two challenges: (i) the dependency between autonomous and human agents through interaction; (ii) accounting for human uncertainties where both parties must collectively sati...
Uloženo v:
| Vydáno v: | IEEE control systems letters Ročník 9; s. 2327 - 2332 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
2025
|
| Témata: | |
| ISSN: | 2475-1456, 2475-1456 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This letter investigates distributed resource allocation involving multiple autonomous agents and multiple humans, focusing on two challenges: (i) the dependency between autonomous and human agents through interaction; (ii) accounting for human uncertainties where both parties must collectively satisfy globally coupled probabilistic resource constraints. To address these, we first quantify the distribution of human choice behaviors using the maximum likelihood estimation (MLE), where human decisions evolve in response to nearby agent behaviors. Building on this human model, we introduce a novel reformulation that approximates the original probabilistic constraint via a polyhedral inner approximation, which then enables a fully distributed algorithm design over the system's communication graph while ensuring probabilistic constraint satisfaction. The proposed approach is validated through theoretical analysis and human-subject experiments. |
|---|---|
| ISSN: | 2475-1456 2475-1456 |
| DOI: | 10.1109/LCSYS.2025.3604959 |