Distributed Resource Allocation for Human-Autonomy Teaming With Human Preference Uncertainty

This letter investigates distributed resource allocation involving multiple autonomous agents and multiple humans, focusing on two challenges: (i) the dependency between autonomous and human agents through interaction; (ii) accounting for human uncertainties where both parties must collectively sati...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE control systems letters Ročník 9; s. 2327 - 2332
Hlavní autori: Yao, Yichen, Mbagna Nanko, Ryan, Wang, Yue, Wang, Xuan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 2025
Predmet:
ISSN:2475-1456, 2475-1456
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This letter investigates distributed resource allocation involving multiple autonomous agents and multiple humans, focusing on two challenges: (i) the dependency between autonomous and human agents through interaction; (ii) accounting for human uncertainties where both parties must collectively satisfy globally coupled probabilistic resource constraints. To address these, we first quantify the distribution of human choice behaviors using the maximum likelihood estimation (MLE), where human decisions evolve in response to nearby agent behaviors. Building on this human model, we introduce a novel reformulation that approximates the original probabilistic constraint via a polyhedral inner approximation, which then enables a fully distributed algorithm design over the system's communication graph while ensuring probabilistic constraint satisfaction. The proposed approach is validated through theoretical analysis and human-subject experiments.
ISSN:2475-1456
2475-1456
DOI:10.1109/LCSYS.2025.3604959