Self-supervised autoencoder network for robust heart rate extraction from noisy photoplethysmogram: Applying blind source separation to biosignal analysis
Biosignals can be viewed as mixtures measuring particular physiological events, and blind source separation (BSS) aims to extract underlying source signals from mixtures. This paper proposes a self-supervised multi-encoder autoencoder (MEAE) to separate heartbeat-related source signals from photople...
Saved in:
| Published in: | Computers in biology and medicine Vol. 199; p. 111319 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Elsevier Ltd
01.12.2025
|
| Subjects: | |
| ISSN: | 0010-4825, 1879-0534, 1879-0534 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Biosignals can be viewed as mixtures measuring particular physiological events, and blind source separation (BSS) aims to extract underlying source signals from mixtures. This paper proposes a self-supervised multi-encoder autoencoder (MEAE) to separate heartbeat-related source signals from photoplethysmogram (PPG), enhancing heart rate (HR) detection in noisy PPG data. The MEAE is trained on PPG signals from a large open polysomnography database without any pre-processing or data selection. The trained network is then applied to a noisy PPG dataset collected during the daily activities of nine subjects and a surgical dataset comprising 4,681 patients. The extracted heartbeat-related source signal significantly improves HR detection as compared to the original PPG. The absence of pre-processing and the self-supervised nature of the proposed method, combined with its strong performance, highlight the potential of MEAE for BSS in biosignal analysis.
•Biosignals are often difficult to analyze due to presence of unknown noises including motion artifacts.•Blind source separation via self-supervised autoencoder allows to separate out information from biosignals.•Blind source separation applied to noisy photoplethysmogram successfully isolated heartbeat related source.•Blind source separation without any directives (supervision in deep learning) can result in extraction of information present in the training data.•Analyses of large biosignal databases can benefit from self-supervised blind source separation due to the lack of pre-processing or data selection. |
|---|---|
| AbstractList | Biosignals can be viewed as mixtures measuring particular physiological events, and blind source separation (BSS) aims to extract underlying source signals from mixtures. This paper proposes a self-supervised multi-encoder autoencoder (MEAE) to separate heartbeat-related source signals from photoplethysmogram (PPG), enhancing heart rate (HR) detection in noisy PPG data. The MEAE is trained on PPG signals from a large open polysomnography database without any pre-processing or data selection. The trained network is then applied to a noisy PPG dataset collected during the daily activities of nine subjects and a surgical dataset comprising 4,681 patients. The extracted heartbeat-related source signal significantly improves HR detection as compared to the original PPG. The absence of pre-processing and the self-supervised nature of the proposed method, combined with its strong performance, highlight the potential of MEAE for BSS in biosignal analysis.Biosignals can be viewed as mixtures measuring particular physiological events, and blind source separation (BSS) aims to extract underlying source signals from mixtures. This paper proposes a self-supervised multi-encoder autoencoder (MEAE) to separate heartbeat-related source signals from photoplethysmogram (PPG), enhancing heart rate (HR) detection in noisy PPG data. The MEAE is trained on PPG signals from a large open polysomnography database without any pre-processing or data selection. The trained network is then applied to a noisy PPG dataset collected during the daily activities of nine subjects and a surgical dataset comprising 4,681 patients. The extracted heartbeat-related source signal significantly improves HR detection as compared to the original PPG. The absence of pre-processing and the self-supervised nature of the proposed method, combined with its strong performance, highlight the potential of MEAE for BSS in biosignal analysis. Biosignals can be viewed as mixtures measuring particular physiological events, and blind source separation (BSS) aims to extract underlying source signals from mixtures. This paper proposes a self-supervised multi-encoder autoencoder (MEAE) to separate heartbeat-related source signals from photoplethysmogram (PPG), enhancing heart rate (HR) detection in noisy PPG data. The MEAE is trained on PPG signals from a large open polysomnography database without any pre-processing or data selection. The trained network is then applied to a noisy PPG dataset collected during the daily activities of nine subjects and a surgical dataset comprising 4,681 patients. The extracted heartbeat-related source signal significantly improves HR detection as compared to the original PPG. The absence of pre-processing and the self-supervised nature of the proposed method, combined with its strong performance, highlight the potential of MEAE for BSS in biosignal analysis. •Biosignals are often difficult to analyze due to presence of unknown noises including motion artifacts.•Blind source separation via self-supervised autoencoder allows to separate out information from biosignals.•Blind source separation applied to noisy photoplethysmogram successfully isolated heartbeat related source.•Blind source separation without any directives (supervision in deep learning) can result in extraction of information present in the training data.•Analyses of large biosignal databases can benefit from self-supervised blind source separation due to the lack of pre-processing or data selection. Biosignals can be viewed as mixtures measuring particular physiological events, and blind source separation (BSS) aims to extract underlying source signals from mixtures. This paper proposes a self-supervised multi-encoder autoencoder (MEAE) to separate heartbeat-related source signals from photoplethysmogram (PPG), enhancing heart rate (HR) detection in noisy PPG data. The MEAE is trained on PPG signals from a large open polysomnography database without any pre-processing or data selection. The trained network is then applied to a noisy PPG dataset collected during the daily activities of nine subjects and a surgical dataset comprising 4,681 patients. The extracted heartbeat-related source signal significantly improves HR detection as compared to the original PPG. The absence of pre-processing and the self-supervised nature of the proposed method, combined with its strong performance, highlight the potential of MEAE for BSS in biosignal analysis. |
| ArticleNumber | 111319 |
| Author | Lee, Dongheon Webster, Matthew B. Lee, Joonnyong |
| Author_xml | – sequence: 1 givenname: Matthew B. surname: Webster fullname: Webster, Matthew B. organization: Mellowing Factory Co. Ltd., Seoul, Republic of Korea – sequence: 2 givenname: Dongheon orcidid: 0000-0002-3121-7099 surname: Lee fullname: Lee, Dongheon organization: Chungnam National University Hospital, Daejeon, Republic of Korea – sequence: 3 givenname: Joonnyong orcidid: 0000-0002-3642-9891 surname: Lee fullname: Lee, Joonnyong email: joonnyonglee@melab.snu.ac.kr organization: Mellowing Factory Co. Ltd., Seoul, Republic of Korea |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/41274114$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkc1u1DAUhS1URKeFV0BesslgJ84fK0rFn1SJBbC2bOdmxlPHN9hOS16Fp8WjKSCx6ubezTlHOue7IGcePRBCOdtyxpvXh63BadYWJxi2JSvrLee84v0TsuFd2xesrsQZ2TDGWSG6sj4nFzEeGGOCVewZORe8bAXnYkN-fQU3FnGZIdzZCANVS0LwBgcI1EO6x3BLRww0oF5iontQIdGgElD4mYIyyaKnY8CJerRxpfMeE84O0n6NE-6Cmt7Qq3l2q_U7qp31A424BAM0wqxy0NGfkOYy0e68clTls0Ybn5Ono3IRXjz8S_L9w_tv15-Kmy8fP19f3RSmLLkodGta3mjBVTnk7rmXYnxsa6VACTCtalinWaMH3Qz9WI9atMBZr3ira2b6qrokr065c8AfC8QkJxsNOKc84BJllbequ6Yrmyx9-SBddJ5ezsFOKqzyz55Z0J0EJmCMAca_Es7kEZ08yH_o5BGdPKHL1ncnK-SudxaCjMZmEjDYACbJAe1jQt7-F2Ly5NYodwvr4yJ-A14OwUA |
| Cites_doi | 10.1016/j.neucom.2014.08.092 10.1001/jamacardio.2018.0136 10.1007/BF02348427 10.1007/BF02345755 10.1109/TBME.2012.2208112 10.1038/s41597-022-01411-5 10.1109/JBHI.2018.2885139 10.1038/44565 10.1093/jamia/ocy064 10.1109/TIM.2011.2175832 10.1109/TIM.2018.2829488 10.1109/MEMB.2003.1213624 10.1109/TBME.2009.2039568 10.1016/j.artmed.2011.05.001 10.2174/157340312801215782 10.3390/s20113238 10.3390/electronics3020282 10.1088/0967-3334/28/3/R01 10.1186/s12938-018-0510-8 10.1109/TBME.2014.2359372 10.1378/chest.95.4.713 10.1016/S0893-6080(98)00140-3 10.3390/jpm7020003 10.1109/LSP.2015.2486681 10.1109/TIM.2008.2009136 10.1016/j.bspc.2006.01.001 10.1109/LSP.2015.2476667 10.1016/j.neucom.2025.131008 10.1109/TBME.2012.2186448 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd 2025 Copyright © 2025. Published by Elsevier Ltd. |
| Copyright_xml | – notice: 2025 Elsevier Ltd – notice: 2025 – notice: Copyright © 2025. Published by Elsevier Ltd. |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1016/j.compbiomed.2025.111319 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-0534 |
| ExternalDocumentID | 41274114 10_1016_j_compbiomed_2025_111319 S0010482525016737 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9DU 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFFHD AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- ~HD AAYXX CITATION NPM 7X8 |
| ID | FETCH-LOGICAL-c2214-b7c716b41a2d879741a01f75aaea4ec7a608b06bdb6d9f5fb47e109a17b50c933 |
| ISSN | 0010-4825 1879-0534 |
| IngestDate | Mon Nov 24 00:27:30 EST 2025 Mon Nov 24 02:18:52 EST 2025 Thu Nov 27 01:06:00 EST 2025 Sat Nov 29 17:08:09 EST 2025 Sat Nov 29 06:57:07 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Biosignal processing Heart rate detection Blind source separation Self-supervised learning Photoplethysmogram Denoising |
| Language | English |
| License | Copyright © 2025. Published by Elsevier Ltd. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c2214-b7c716b41a2d879741a01f75aaea4ec7a608b06bdb6d9f5fb47e109a17b50c933 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-3121-7099 0000-0002-3642-9891 |
| PMID | 41274114 |
| PQID | 3274586826 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3274586826 pubmed_primary_41274114 crossref_primary_10_1016_j_compbiomed_2025_111319 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2025_111319 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2025_111319 |
| PublicationCentury | 2000 |
| PublicationDate | December 2025 |
| PublicationDateYYYYMMDD | 2025-12-01 |
| PublicationDate_xml | – month: 12 year: 2025 text: December 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Computers in biology and medicine |
| PublicationTitleAlternate | Comput Biol Med |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Tison, Sanchez, Ballinger, Singh, Olgin, Pletcher, Vittinghoff, Lee, Fan, Gladstone, Mikell, Sohoni, Hsieh, Marcus (b8) 2018; 3 Wang, Zhou, Xing, Zhou (b17) 2018; 2018 Lee, Park, Yoon, Yang, Park, Jung (b41) 2022; 9 Kurylyak, Barbé, Lamonaca, Grimaldi, Van Moer (b30) 2013 Raghuram, Venu Madhav, Hari Krishna, Ashoka Reddy (b27) 2010 Lee, Reyes, McManus, Maitas, Chon (b12) 2013; 60 Lee, Sohn, Park, Yang, Lee, Kim (b14) 2018; 17 Brakel, Bengio (b38) 2017 Monte-Moreno (b15) 2011; 53 Elgendi (b18) 2012; 8 Terry (b31) 2005 Hyvärinen, Oja (b35) 1996; Vol. 9 Lee, Sun, Yang, Sohn, Park, Lee, Kim (b5) 2019; 23 Lee, Seung (b34) 1999; 401 Tremper (b9) 1989; 95 Shcherbina, Mattsson, Waggott, Salisbury, Christle, Hastie, Wheeler, Ashley (b19) 2017; 7 Chen, Kobayashi, Ichikawa, Takeuchi, Togawa (b13) 2000; 38 Zhang, Cui, Mueller, Tao, Kim, Rueschman, Mariani, Mobley, Redline (b40) 2018; 25 Zhang, Pi, Liu (b22) 2015; 62 Hyvärinen, Pajunen (b33) 1999; 12 Chen, Wang, Zee, Lutsey, Javaheri, Alcántara, Jackson, Williams, Redline (b39) 2015; 38 Singha Roy, Gupta, Chandra, Das Sharma, Talukdar (b4) 2018; 67 Krishnan, Natarajan, Warren (b20) 2010; 57 Lei, Ling, Feng, Chen (b37) 2020; 20 Webster, Lee (b6) 2025 Asada, Shaltis, Reisner, Rhee, Hutchinson (b43) 2003; 22 del Testa, Rossi (b3) 2015; 22 Johansson (b29) 2003; 41 Allen (b10) 2007; 28 Teng, Zhang (b16) 2003; 4 Ram, Madhav, Krishna, Komalla, Reddy (b24) 2012; 61 Widjaja, Varon, Dorado, Suykens, Van Huffel (b36) 2012; 59 Lee, Zhang (b26) 2003 Foo (b28) 2006; 1 Lakshminarasimha Murthy, Madhusudana, Suresha, Periyasamy, Ghosh (b23) 2015; 22 Luo, Li, Wang, Cuschieri (b2) 2017; 2017 Chan, Wong, Poh, Pun, Leung, Wong, Wong, Poh, Chu, Siu (b11) 2016; 5 Joseph, Joseph, Titus, Thomas, Jose (b25) 2014 Tamura, Maeda, Sekine, Yoshida (b44) 2014; 3 Reddy, George, Kumar (b21) 2009; 58 Howell, Porr (b42) 2019 Comon, Jutten (b32) 2010 Phan, Siong, Pathirana, Seneviratne (b7) 2015 Li, Struzik, Zhang, Cichocki (b1) 2015; 165 Johansson (10.1016/j.compbiomed.2025.111319_b29) 2003; 41 del Testa (10.1016/j.compbiomed.2025.111319_b3) 2015; 22 Tison (10.1016/j.compbiomed.2025.111319_b8) 2018; 3 Hyvärinen (10.1016/j.compbiomed.2025.111319_b35) 1996; Vol. 9 Teng (10.1016/j.compbiomed.2025.111319_b16) 2003; 4 Reddy (10.1016/j.compbiomed.2025.111319_b21) 2009; 58 Joseph (10.1016/j.compbiomed.2025.111319_b25) 2014 Lee (10.1016/j.compbiomed.2025.111319_b34) 1999; 401 Krishnan (10.1016/j.compbiomed.2025.111319_b20) 2010; 57 Lee (10.1016/j.compbiomed.2025.111319_b12) 2013; 60 Kurylyak (10.1016/j.compbiomed.2025.111319_b30) 2013 Luo (10.1016/j.compbiomed.2025.111319_b2) 2017; 2017 Lee (10.1016/j.compbiomed.2025.111319_b41) 2022; 9 Foo (10.1016/j.compbiomed.2025.111319_b28) 2006; 1 Tamura (10.1016/j.compbiomed.2025.111319_b44) 2014; 3 Hyvärinen (10.1016/j.compbiomed.2025.111319_b33) 1999; 12 Li (10.1016/j.compbiomed.2025.111319_b1) 2015; 165 Chen (10.1016/j.compbiomed.2025.111319_b13) 2000; 38 Lei (10.1016/j.compbiomed.2025.111319_b37) 2020; 20 Wang (10.1016/j.compbiomed.2025.111319_b17) 2018; 2018 Elgendi (10.1016/j.compbiomed.2025.111319_b18) 2012; 8 Phan (10.1016/j.compbiomed.2025.111319_b7) 2015 Zhang (10.1016/j.compbiomed.2025.111319_b22) 2015; 62 Ram (10.1016/j.compbiomed.2025.111319_b24) 2012; 61 Widjaja (10.1016/j.compbiomed.2025.111319_b36) 2012; 59 Lee (10.1016/j.compbiomed.2025.111319_b14) 2018; 17 Chan (10.1016/j.compbiomed.2025.111319_b11) 2016; 5 Shcherbina (10.1016/j.compbiomed.2025.111319_b19) 2017; 7 Lee (10.1016/j.compbiomed.2025.111319_b5) 2019; 23 Tremper (10.1016/j.compbiomed.2025.111319_b9) 1989; 95 Terry (10.1016/j.compbiomed.2025.111319_b31) 2005 Allen (10.1016/j.compbiomed.2025.111319_b10) 2007; 28 Comon (10.1016/j.compbiomed.2025.111319_b32) 2010 Brakel (10.1016/j.compbiomed.2025.111319_b38) 2017 Monte-Moreno (10.1016/j.compbiomed.2025.111319_b15) 2011; 53 Asada (10.1016/j.compbiomed.2025.111319_b43) 2003; 22 Raghuram (10.1016/j.compbiomed.2025.111319_b27) 2010 Singha Roy (10.1016/j.compbiomed.2025.111319_b4) 2018; 67 Webster (10.1016/j.compbiomed.2025.111319_b6) 2025 Lee (10.1016/j.compbiomed.2025.111319_b26) 2003 Chen (10.1016/j.compbiomed.2025.111319_b39) 2015; 38 Lakshminarasimha Murthy (10.1016/j.compbiomed.2025.111319_b23) 2015; 22 Howell (10.1016/j.compbiomed.2025.111319_b42) 2019 Zhang (10.1016/j.compbiomed.2025.111319_b40) 2018; 25 |
| References_xml | – volume: 17 start-page: 81 year: 2018 ident: b14 article-title: Novel blood pressure and pulse pressure estimation based on pulse transit time and stroke volume approximation publication-title: BioMedical Eng. OnLine – volume: 62 start-page: 522 year: 2015 end-page: 531 ident: b22 article-title: TROIKA: A general framework for heart rate monitoring using wrist-type photoplethysmographic signals during intensive physical exercise publication-title: IEEE Trans. Biomed. Eng. – volume: 1 start-page: 93 year: 2006 end-page: 98 ident: b28 article-title: Comparison of wavelet transformation and adaptive filtering in restoring artefact-induced time-related measurement publication-title: Biomed. Signal Process. Control. – year: 2017 ident: b38 article-title: Learning independent features with adversarial nets for non-linear ICA – start-page: 170 year: 2013 end-page: 174 ident: b30 article-title: Photoplethysmogram-based blood pressure evaluation using Kalman filtering and neural networks publication-title: 2013 IEEE International Symposium on Medical Measurements and Applications (MeMeA) – volume: 38 start-page: 877 year: 2015 end-page: 888 ident: b39 article-title: Racial/ethnic differences in sleep disturbances: The multi-ethnic study of atherosclerosis (MESA) publication-title: Sleep – volume: 9 start-page: 279 year: 2022 ident: b41 article-title: VitalDB, a high-fidelity multi-parameter vital signs database in surgical patients publication-title: Sci. Data – volume: 2018 year: 2018 ident: b17 article-title: A novel neural network model for blood pressure estimation using photoplethesmography without electrocardiogram publication-title: J. Heal. Eng. – volume: 58 start-page: 1706 year: 2009 end-page: 1711 ident: b21 article-title: Use of Fourier series analysis for motion artifact reduction and data compression of photoplethysmographic signals publication-title: IEEE Trans. Instrum. Meas. – year: 2005 ident: b31 article-title: Multi-domain motion estimation and plethysmographic recognition using fuzzy neural-nets – volume: 12 start-page: 429 year: 1999 end-page: 439 ident: b33 article-title: Nonlinear independent component analysis: Existence and uniqueness results publication-title: Neural Netw. – volume: 4 start-page: 3153 year: 2003 end-page: 3156 Vol.4 ident: b16 article-title: Continuous and noninvasive estimation of arterial blood pressure using a photoplethysmographic approach publication-title: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No.03CH37439) – volume: 57 start-page: 1867 year: 2010 end-page: 1876 ident: b20 article-title: Two-stage approach for detection and reduction of motion artifacts in photoplethysmographic data publication-title: IEEE Trans. Biomed. Eng. – volume: 59 start-page: 1169 year: 2012 end-page: 1176 ident: b36 article-title: Application of kernel principal component analysis for single-lead-ECG-derived respiration publication-title: IEEE Trans. Biomed. Eng. – year: 2025 ident: b6 article-title: Blind source separation of single-channel mixtures via multi-encoder autoencoders publication-title: Neurocomputing – start-page: 460 year: 2010 end-page: 463 ident: b27 article-title: Evaluation of wavelets for reduction of motion artifacts in photoplethysmographic signals publication-title: 10th International Conference on Information Science, Signal Processing and their Applications (ISSPA 2010) – volume: 41 start-page: 242 year: 2003 end-page: 248 ident: b29 article-title: Neural network for photoplethysmographic respiratory rate monitoring publication-title: Med. Biol. Eng. Comput. – volume: 2017 year: 2017 ident: b2 article-title: Patient-specific deep architectural model for ECG classification publication-title: J. Heal. Eng. – volume: 22 start-page: 2304 year: 2015 end-page: 2308 ident: b3 article-title: Lightweight lossy compression of biometric patterns via denoising autoencoders publication-title: IEEE Signal Process. Lett. – volume: 38 start-page: 569 year: 2000 end-page: 574 ident: b13 article-title: Continuous estimation of systolic blood pressure using the pulse arrival time and intermittent calibration publication-title: Med. Biol. Eng. Comput. – volume: 165 start-page: 23 year: 2015 end-page: 31 ident: b1 article-title: Feature learning from incomplete EEG with denoising autoencoder publication-title: Neurocomputing – volume: 3 start-page: 282 year: 2014 end-page: 302 ident: b44 article-title: Wearable photoplethysmographic sensors—Past and present publication-title: Electronics – volume: 67 start-page: 2820 year: 2018 end-page: 2829 ident: b4 article-title: Improving photoplethysmographic measurements under motion artifacts using artificial neural network for personal healthcare publication-title: IEEE Trans. Instrum. Meas. – start-page: 194 year: 2003 end-page: 195 ident: b26 article-title: Reduction of motion artifacts from photoplethysmographic recordings using a wavelet denoising approach publication-title: IEEE EMBS Asian-Pacific Conference on Biomedical Engineering, 2003. – volume: 22 start-page: 2391 year: 2015 end-page: 2395 ident: b23 article-title: Multiple spectral peak tracking for heart rate monitoring from photoplethysmography signal during intensive physical exercise publication-title: IEEE Signal Process. Lett. – volume: 20 year: 2020 ident: b37 article-title: Estimation of heart rate and respiratory rate from PPG signal using complementary ensemble empirical mode decomposition with both independent component analysis and non-negative matrix factorization publication-title: Sensors – volume: 23 start-page: 2375 year: 2019 end-page: 2385 ident: b5 article-title: Bidirectional recurrent auto-encoder for photoplethysmogram denoising publication-title: IEEE J. Biomed. Health Informatics – volume: 61 start-page: 1445 year: 2012 end-page: 1457 ident: b24 article-title: A novel approach for motion artifact reduction in PPG signals based on AS-LMS adaptive filter publication-title: IEEE Trans. Instrum. Meas. – volume: 22 start-page: 28 year: 2003 end-page: 40 ident: b43 article-title: Mobile monitoring with wearable photoplethysmographic biosensors publication-title: IEEE Eng. Med. Biol. Mag. – volume: 53 start-page: 127 year: 2011 end-page: 138 ident: b15 article-title: Non-invasive estimate of blood glucose and blood pressure from a photoplethysmograph by means of machine learning techniques publication-title: Artif. Intell. Med. – volume: 25 start-page: 1351 year: 2018 end-page: 1358 ident: b40 article-title: The national sleep research resource: towards a sleep data commons publication-title: J. Am. Med. Inform. Assoc. (JAMIA) – volume: Vol. 9 year: 1996 ident: b35 article-title: One-unit learning rules for independent component analysis publication-title: Advances in Neural Information Processing Systems – year: 2010 ident: b32 article-title: Handbook of Blind Source Separation, Independent Component Analysis and Applications – volume: 401 start-page: 788 year: 1999 end-page: 791 ident: b34 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature – volume: 3 start-page: 409 year: 2018 end-page: 416 ident: b8 article-title: Passive detection of atrial fibrillation using a commercially available smartwatch publication-title: JAMA Cardiol. – volume: 95 start-page: 713 year: 1989 end-page: 715 ident: b9 article-title: Pulse oximetry publication-title: Chest – start-page: 1 year: 2014 end-page: 5 ident: b25 article-title: Photoplethysmogram (PPG) signal analysis and wavelet de-noising publication-title: 2014 Annual International Conference on Emerging Research Areas: Magnetics, Machines and Drives (AICERA/ICMMD) – volume: 7 year: 2017 ident: b19 article-title: Accuracy in wrist-worn, sensor-based measurements of heart rate and energy expenditure in a diverse cohort publication-title: J. Pers. Med. – year: 2019 ident: b42 article-title: ECG detectors – start-page: 144 year: 2015 end-page: 147 ident: b7 article-title: Smartwatch: Performance evaluation for long-term heart rate monitoring publication-title: 2015 International Symposium on Bioelectronics and Bioinformatics – volume: 5 year: 2016 ident: b11 article-title: Diagnostic performance of a smartphone-based photoplethysmographic application for atrial fibrillation screening in a primary care setting publication-title: J. Am. Hear. Assoc. – volume: 60 start-page: 203 year: 2013 end-page: 206 ident: b12 article-title: Atrial fibrillation detection using an iPhone 4S publication-title: IEEE Trans. Biomed. Eng. – volume: 8 start-page: 14 year: 2012 end-page: 25 ident: b18 article-title: On the analysis of fingertip photoplethysmogram signals publication-title: Curr. Cardiol. Rev. – volume: 28 start-page: R1 year: 2007 end-page: 39 ident: b10 article-title: Photoplethysmography and its application in clinical physiological measurement publication-title: Physiol. Meas. – volume: 165 start-page: 23 issn: 0925-2312 issue: C year: 2015 ident: 10.1016/j.compbiomed.2025.111319_b1 article-title: Feature learning from incomplete EEG with denoising autoencoder publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.08.092 – volume: 2018 issue: 1 year: 2018 ident: 10.1016/j.compbiomed.2025.111319_b17 article-title: A novel neural network model for blood pressure estimation using photoplethesmography without electrocardiogram publication-title: J. Heal. Eng. – volume: 3 start-page: 409 issue: 5 year: 2018 ident: 10.1016/j.compbiomed.2025.111319_b8 article-title: Passive detection of atrial fibrillation using a commercially available smartwatch publication-title: JAMA Cardiol. doi: 10.1001/jamacardio.2018.0136 – volume: 41 start-page: 242 issue: 3 year: 2003 ident: 10.1016/j.compbiomed.2025.111319_b29 article-title: Neural network for photoplethysmographic respiratory rate monitoring publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02348427 – volume: 38 start-page: 569 issn: 1741-0444 issue: 5 year: 2000 ident: 10.1016/j.compbiomed.2025.111319_b13 article-title: Continuous estimation of systolic blood pressure using the pulse arrival time and intermittent calibration publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02345755 – volume: 60 start-page: 203 issue: 1 year: 2013 ident: 10.1016/j.compbiomed.2025.111319_b12 article-title: Atrial fibrillation detection using an iPhone 4S publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2012.2208112 – volume: 9 start-page: 279 issue: 1 year: 2022 ident: 10.1016/j.compbiomed.2025.111319_b41 article-title: VitalDB, a high-fidelity multi-parameter vital signs database in surgical patients publication-title: Sci. Data doi: 10.1038/s41597-022-01411-5 – start-page: 194 year: 2003 ident: 10.1016/j.compbiomed.2025.111319_b26 article-title: Reduction of motion artifacts from photoplethysmographic recordings using a wavelet denoising approach – year: 2005 ident: 10.1016/j.compbiomed.2025.111319_b31 – volume: 2017 issue: 1 year: 2017 ident: 10.1016/j.compbiomed.2025.111319_b2 article-title: Patient-specific deep architectural model for ECG classification publication-title: J. Heal. Eng. – volume: 23 start-page: 2375 issue: 6 year: 2019 ident: 10.1016/j.compbiomed.2025.111319_b5 article-title: Bidirectional recurrent auto-encoder for photoplethysmogram denoising publication-title: IEEE J. Biomed. Health Informatics doi: 10.1109/JBHI.2018.2885139 – volume: 5 issue: 7 year: 2016 ident: 10.1016/j.compbiomed.2025.111319_b11 article-title: Diagnostic performance of a smartphone-based photoplethysmographic application for atrial fibrillation screening in a primary care setting publication-title: J. Am. Hear. Assoc. – volume: 401 start-page: 788 issn: 1476-4687 issue: 6755 year: 1999 ident: 10.1016/j.compbiomed.2025.111319_b34 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature doi: 10.1038/44565 – volume: 25 start-page: 1351 year: 2018 ident: 10.1016/j.compbiomed.2025.111319_b40 article-title: The national sleep research resource: towards a sleep data commons publication-title: J. Am. Med. Inform. Assoc. (JAMIA) doi: 10.1093/jamia/ocy064 – volume: 4 start-page: 3153 year: 2003 ident: 10.1016/j.compbiomed.2025.111319_b16 article-title: Continuous and noninvasive estimation of arterial blood pressure using a photoplethysmographic approach – volume: 61 start-page: 1445 issue: 5 year: 2012 ident: 10.1016/j.compbiomed.2025.111319_b24 article-title: A novel approach for motion artifact reduction in PPG signals based on AS-LMS adaptive filter publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2011.2175832 – start-page: 1 year: 2014 ident: 10.1016/j.compbiomed.2025.111319_b25 article-title: Photoplethysmogram (PPG) signal analysis and wavelet de-noising – volume: 67 start-page: 2820 issue: 12 year: 2018 ident: 10.1016/j.compbiomed.2025.111319_b4 article-title: Improving photoplethysmographic measurements under motion artifacts using artificial neural network for personal healthcare publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2018.2829488 – volume: 22 start-page: 28 issue: 3 year: 2003 ident: 10.1016/j.compbiomed.2025.111319_b43 article-title: Mobile monitoring with wearable photoplethysmographic biosensors publication-title: IEEE Eng. Med. Biol. Mag. doi: 10.1109/MEMB.2003.1213624 – volume: 57 start-page: 1867 issue: 8 year: 2010 ident: 10.1016/j.compbiomed.2025.111319_b20 article-title: Two-stage approach for detection and reduction of motion artifacts in photoplethysmographic data publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2009.2039568 – volume: 38 start-page: 877 issue: 6 year: 2015 ident: 10.1016/j.compbiomed.2025.111319_b39 article-title: Racial/ethnic differences in sleep disturbances: The multi-ethnic study of atherosclerosis (MESA) publication-title: Sleep – year: 2017 ident: 10.1016/j.compbiomed.2025.111319_b38 – start-page: 170 year: 2013 ident: 10.1016/j.compbiomed.2025.111319_b30 article-title: Photoplethysmogram-based blood pressure evaluation using Kalman filtering and neural networks – volume: 53 start-page: 127 issn: 0933-3657 issue: 2 year: 2011 ident: 10.1016/j.compbiomed.2025.111319_b15 article-title: Non-invasive estimate of blood glucose and blood pressure from a photoplethysmograph by means of machine learning techniques publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2011.05.001 – volume: 8 start-page: 14 issue: 1 year: 2012 ident: 10.1016/j.compbiomed.2025.111319_b18 article-title: On the analysis of fingertip photoplethysmogram signals publication-title: Curr. Cardiol. Rev. doi: 10.2174/157340312801215782 – volume: 20 issn: 1424-8220 issue: 11 year: 2020 ident: 10.1016/j.compbiomed.2025.111319_b37 article-title: Estimation of heart rate and respiratory rate from PPG signal using complementary ensemble empirical mode decomposition with both independent component analysis and non-negative matrix factorization publication-title: Sensors doi: 10.3390/s20113238 – volume: Vol. 9 year: 1996 ident: 10.1016/j.compbiomed.2025.111319_b35 article-title: One-unit learning rules for independent component analysis – volume: 3 start-page: 282 issn: 2079-9292 issue: 2 year: 2014 ident: 10.1016/j.compbiomed.2025.111319_b44 article-title: Wearable photoplethysmographic sensors—Past and present publication-title: Electronics doi: 10.3390/electronics3020282 – volume: 28 start-page: R1 issue: 3 year: 2007 ident: 10.1016/j.compbiomed.2025.111319_b10 article-title: Photoplethysmography and its application in clinical physiological measurement publication-title: Physiol. Meas. doi: 10.1088/0967-3334/28/3/R01 – start-page: 144 year: 2015 ident: 10.1016/j.compbiomed.2025.111319_b7 article-title: Smartwatch: Performance evaluation for long-term heart rate monitoring – volume: 17 start-page: 81 issue: 1 year: 2018 ident: 10.1016/j.compbiomed.2025.111319_b14 article-title: Novel blood pressure and pulse pressure estimation based on pulse transit time and stroke volume approximation publication-title: BioMedical Eng. OnLine doi: 10.1186/s12938-018-0510-8 – volume: 62 start-page: 522 issue: 2 year: 2015 ident: 10.1016/j.compbiomed.2025.111319_b22 article-title: TROIKA: A general framework for heart rate monitoring using wrist-type photoplethysmographic signals during intensive physical exercise publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2014.2359372 – year: 2010 ident: 10.1016/j.compbiomed.2025.111319_b32 – volume: 95 start-page: 713 issn: 0012-3692 issue: 4 year: 1989 ident: 10.1016/j.compbiomed.2025.111319_b9 article-title: Pulse oximetry publication-title: Chest doi: 10.1378/chest.95.4.713 – volume: 12 start-page: 429 issn: 0893-6080 issue: 3 year: 1999 ident: 10.1016/j.compbiomed.2025.111319_b33 article-title: Nonlinear independent component analysis: Existence and uniqueness results publication-title: Neural Netw. doi: 10.1016/S0893-6080(98)00140-3 – start-page: 460 year: 2010 ident: 10.1016/j.compbiomed.2025.111319_b27 article-title: Evaluation of wavelets for reduction of motion artifacts in photoplethysmographic signals – volume: 7 issn: 2075-4426 issue: 2 year: 2017 ident: 10.1016/j.compbiomed.2025.111319_b19 article-title: Accuracy in wrist-worn, sensor-based measurements of heart rate and energy expenditure in a diverse cohort publication-title: J. Pers. Med. doi: 10.3390/jpm7020003 – volume: 22 start-page: 2391 issue: 12 year: 2015 ident: 10.1016/j.compbiomed.2025.111319_b23 article-title: Multiple spectral peak tracking for heart rate monitoring from photoplethysmography signal during intensive physical exercise publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2015.2486681 – volume: 58 start-page: 1706 issue: 5 year: 2009 ident: 10.1016/j.compbiomed.2025.111319_b21 article-title: Use of Fourier series analysis for motion artifact reduction and data compression of photoplethysmographic signals publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2008.2009136 – volume: 1 start-page: 93 issn: 1746-8094 issue: 1 year: 2006 ident: 10.1016/j.compbiomed.2025.111319_b28 article-title: Comparison of wavelet transformation and adaptive filtering in restoring artefact-induced time-related measurement publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2006.01.001 – volume: 22 start-page: 2304 year: 2015 ident: 10.1016/j.compbiomed.2025.111319_b3 article-title: Lightweight lossy compression of biometric patterns via denoising autoencoders publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2015.2476667 – issn: 0925-2312 year: 2025 ident: 10.1016/j.compbiomed.2025.111319_b6 article-title: Blind source separation of single-channel mixtures via multi-encoder autoencoders publication-title: Neurocomputing doi: 10.1016/j.neucom.2025.131008 – volume: 59 start-page: 1169 issue: 4 year: 2012 ident: 10.1016/j.compbiomed.2025.111319_b36 article-title: Application of kernel principal component analysis for single-lead-ECG-derived respiration publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2012.2186448 – year: 2019 ident: 10.1016/j.compbiomed.2025.111319_b42 |
| SSID | ssj0004030 |
| Score | 2.4271903 |
| Snippet | Biosignals can be viewed as mixtures measuring particular physiological events, and blind source separation (BSS) aims to extract underlying source signals... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 111319 |
| SubjectTerms | Biosignal processing Blind source separation Denoising Heart rate detection Photoplethysmogram Self-supervised learning |
| Title | Self-supervised autoencoder network for robust heart rate extraction from noisy photoplethysmogram: Applying blind source separation to biosignal analysis |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482525016737 https://dx.doi.org/10.1016/j.compbiomed.2025.111319 https://www.ncbi.nlm.nih.gov/pubmed/41274114 https://www.proquest.com/docview/3274586826 |
| Volume | 199 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bjtMwELW6uwjxgrgu5bIyEuKlCso9NjytoCtAS0GiK_oW2YkDXS1xadLV8it8AN_JjO20ZS9SeeAlqiy5aXJOx-PxmRlCngGsVZoI5vlVyb24ihNPJEx6ZjXmPGFclabZRDYascmEf-r1fne5MKcnWV2zszM--69QwxiAjamz_wD38kthAD4D6HAF2OG6EfCf1UnlNYsZGoEG3EmxaDVWq8SiEbUVfRtt4VzLRdOipzhvB1gwYgB2eu5ah5usk1pPG4x96BZV5ojodyPmMsFE8F5NhpQEPxVD73gGMGiULSWOJxB6IKca5SGmGoEtfbLuCnf9JIwgd70W1Pnj_i9Kdu1DXHfytVbRVkf0Rtdfvyl9QV6kdV3_1G5xdrGNMFnTiVhzzDLugZmwIQd1yVhnw22XpQvrgQ1NHCOcM1vP4AXeBxeKyJnqv0pwjz7mB0eHh_l4OBk_n_3wsDsZnuK7Vi1bZCfMEg7Wc2f_3XDyfpWB65uuNsvf5jRjVkl4-c2vcoSu2ugYh2d8i9x0OxW6bxl2m_RUfYdc_-DAuUt-nSMaXSMadUSjQDRqiUYN0SgSja6IRpFo1BCNXiTaS9rRjBqaUUszuqIZbTVd0ox2NLtHjg6G49dvPdfpwyvCMIg9mRWwb5dxIMISXiF4ucIPqiwRQolYFZlIfSb9VJYyLXmVVDLOVOBzEWQy8QseRffJdq1r9YBQFckwgD16wFQVMynAHw_9QpV-VAah4KJPgu615zNb0CXvlI7H-QqqHKHKLVR9wjt88i5hGZbYHFi2wdxXy7nOqbXO6oazn3Z0yMHu42GeqJVeNHkUZnHCUhamfbJrebJ8njjAolRB_HCD2Y_IjdU_7zHZbucL9YRcK07baTPfI1vZhO05tv8B48HlWA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-supervised+autoencoder+network+for+robust+heart+rate+extraction+from+noisy+photoplethysmogram%3A+Applying+blind+source+separation+to+biosignal+analysis&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Webster%2C+Matthew+B&rft.au=Lee%2C+Dongheon&rft.au=Lee%2C+Joonnyong&rft.date=2025-12-01&rft.issn=1879-0534&rft.eissn=1879-0534&rft.volume=199&rft_id=info:doi/10.1016%2Fj.compbiomed.2025.111319&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon |