Camouflaged Variational Graph AutoEncoder Against Attribute Inference Attacks for Cross-Domain Recommendation

Cross-domain recommendation (CDR) aims to alleviate the data sparsity problem by leveraging the benefits of modeling two domains. However, existing research often focuses on the recommendation performance while ignores the privacy leakage issue. We find that an attacker can infer user attribute info...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on knowledge and data engineering Vol. 37; no. 7; pp. 3916 - 3932
Main Authors: Xiong, Yudi, Guo, Yongxin, Pan, Weike, Yang, Qiang, Ming, Zhong, Zhang, Xiaojin, Han, Yu, Lin, Tao, Tang, Xiaoying
Format: Journal Article
Language:English
Published: IEEE 01.07.2025
Subjects:
ISSN:1041-4347, 1558-2191
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Cross-domain recommendation (CDR) aims to alleviate the data sparsity problem by leveraging the benefits of modeling two domains. However, existing research often focuses on the recommendation performance while ignores the privacy leakage issue. We find that an attacker can infer user attribute information from the knowledge (e.g., user preferences) transferred between the source and target domains. For example, in our experiments, the average inference accuracies of attack models on gender and age attributes are 0.8323 and 0.3897. The best-performing attack model achieves accuracies of 0.8847 and 0.4634, exceeding a random inference by 25.10% and 64.04%. We can see that the leakage of user attribute information may significantly exceed what would be expected from random inference. In this paper, we propose a novel recommendation framework named CVGAE (short for camouflaged variational graph autoencoder), which effectively models user behaviors and mitigates the risk of user attribute information leakage at the same time. Specifically, our CVGAE combines the strengths of VAEs in capturing latent features and variability with the ability of GCNs in exploiting high-order relational information. Moreover, to ensure against attribute inference attacks without sacrificing the recommendation performance, we design a user attribute protection module that fuses user attribute-camouflaged information with knowledge transfer during cross-domain processes. We then conduct extensive experiments on three real-world datasets, and find our CVGAE is able to achieve strong privacy protection while making little sacrifices in recommendation accuracy.
AbstractList Cross-domain recommendation (CDR) aims to alleviate the data sparsity problem by leveraging the benefits of modeling two domains. However, existing research often focuses on the recommendation performance while ignores the privacy leakage issue. We find that an attacker can infer user attribute information from the knowledge (e.g., user preferences) transferred between the source and target domains. For example, in our experiments, the average inference accuracies of attack models on gender and age attributes are 0.8323 and 0.3897. The best-performing attack model achieves accuracies of 0.8847 and 0.4634, exceeding a random inference by 25.10% and 64.04%. We can see that the leakage of user attribute information may significantly exceed what would be expected from random inference. In this paper, we propose a novel recommendation framework named CVGAE (short for camouflaged variational graph autoencoder), which effectively models user behaviors and mitigates the risk of user attribute information leakage at the same time. Specifically, our CVGAE combines the strengths of VAEs in capturing latent features and variability with the ability of GCNs in exploiting high-order relational information. Moreover, to ensure against attribute inference attacks without sacrificing the recommendation performance, we design a user attribute protection module that fuses user attribute-camouflaged information with knowledge transfer during cross-domain processes. We then conduct extensive experiments on three real-world datasets, and find our CVGAE is able to achieve strong privacy protection while making little sacrifices in recommendation accuracy.
Author Tang, Xiaoying
Xiong, Yudi
Lin, Tao
Guo, Yongxin
Yang, Qiang
Zhang, Xiaojin
Han, Yu
Pan, Weike
Ming, Zhong
Author_xml – sequence: 1
  givenname: Yudi
  orcidid: 0009-0001-3005-8225
  surname: Xiong
  fullname: Xiong, Yudi
  email: xiongyudi2023@email.szu.edu.cn
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
– sequence: 2
  givenname: Yongxin
  surname: Guo
  fullname: Guo, Yongxin
  email: 220019093@link.cuhk.edu.cn
  organization: School of Science and Engineering, Chinese University of Hong Kong (Shenzhen), Shenzhen, China
– sequence: 3
  givenname: Weike
  orcidid: 0000-0001-6326-9531
  surname: Pan
  fullname: Pan, Weike
  email: panweike@szu.edu.cn
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
– sequence: 4
  givenname: Qiang
  orcidid: 0000-0001-5059-8360
  surname: Yang
  fullname: Yang, Qiang
  email: qyang@cse.ust.hk
  organization: Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
– sequence: 5
  givenname: Zhong
  orcidid: 0000-0001-9310-3460
  surname: Ming
  fullname: Ming, Zhong
  email: mingz@szu.edu.cn
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
– sequence: 6
  givenname: Xiaojin
  orcidid: 0000-0001-9065-6852
  surname: Zhang
  fullname: Zhang, Xiaojin
  email: xiaojinzhang@hust.edu.cn
  organization: School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China
– sequence: 7
  givenname: Yu
  surname: Han
  fullname: Han, Yu
  email: han.yu@ntu.edu.sg
  organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore
– sequence: 8
  givenname: Tao
  surname: Lin
  fullname: Lin, Tao
  email: lintao@westlake.edu.cn
  organization: School of Engineering, Westlake University, Hangzhou, China
– sequence: 9
  givenname: Xiaoying
  orcidid: 0000-0003-3955-1195
  surname: Tang
  fullname: Tang, Xiaoying
  email: tangxiaoying@cuhk.edu.cn
  organization: School of Science and Engineering, Chinese University of Hong Kong (Shenzhen), Shenzhen, China
BookMark eNpNkM1OwzAQhC1UJNrCAyBx8Auk-De2j1FaSkUlJFS4Rq6zKYHGrpzkwNuT0B647K5WM6PRN0MTHzwgdE_JglJiHncvy9WCESYXXKZSGX6FplRKnTBq6GS4iaCJ4ELdoFnbfhFCtNJ0iprcNqGvjvYAJf6wsbZdHbw94nW0p0-c9V1YeRdKiDg72Nq3Hc66Ltb7vgO88RVE8A7Gn3XfLa5CxHkMbZssQzPI8Ru40DTgy7_cW3Rd2WMLd5c9R-9Pq13-nGxf15s82yaOMdIlWihZpqCoEmWaKieZckoqLY2RLOUKhBCcEl3uK6pLrYHtHUkZDNMQIyifI3rOdWOXCFVxinVj409BSTHyKkZexciruPAaPA9nTw0A__RGE54K_gvEO2k_
CODEN ITKEEH
Cites_doi 10.1145/3038912.3052569
10.1109/ICDM58522.2023.00053
10.1109/TKDE.2023.3295601
10.1007/s13278-020-0626-2
10.1145/2724720
10.48550/arXiv.1205.2618
10.1073/pnas.1218772110
10.1109/TKDE.2023.3253168
10.1016/j.dss.2015.03.008
10.1145/1526709.1526899
10.1145/3616855.3635830
10.1145/3637528.3671789
10.1145/3038912.3052695
10.24963/ijcai.2017/343
10.1145/3331184.3331267
10.1145/2365952.2365989
10.1145/3626772.3657902
10.1145/3485447.3512166
10.1145/3336191.3371832
10.1145/3041021.3054207
10.1145/3154793
10.1109/TKDE.2019.2941938
10.1109/TKDE.2019.2946247
10.1007/978-3-030-15719-7_3
10.1145/3632751
10.1109/TKDE.2019.2924656
10.1016/j.dss.2020.113489
10.1007/978-981-97-5555-4_3
10.1145/3522762
10.1145/3460231.3474265
10.1145/1401890.1401969
10.1145/3616855.3635816
10.1145/3539618.3591723
10.1145/3543507.3583402
10.1145/3580305.3599768
10.1145/3442381.3449813
10.24963/ijcai.2019/587
10.1007/11760146_14
10.1145/3269206.3271684
10.1145/3663364
10.1007/s10489-024-05360-x
10.1145/3340531.3412012
10.1109/TKDE.2021.3104873
10.1007/978-3-540-73078-1_44
10.1145/3357384.3357992
10.1145/3488560.3498436
10.1145/3178876.3186150
10.1145/3539618.3591752
10.1145/2594455
10.1145/3397271.3401063
10.1609/aaai.v35i5.16515
10.1109/TKDE.2005.99
10.1145/2792838.2800173
10.1145/3336191.3371793
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TKDE.2025.3565793
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 3932
ExternalDocumentID 10_1109_TKDE_2025_3565793
10980364
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62461160311; 62272315
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2023YFF0725100
– fundername: Basic Research Fund in Shenzhen Natural Science Foundation
  grantid: JCYJ20240813141441054
GroupedDBID -~X
.DC
0R~
1OL
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TAF
TN5
UHB
VH1
AAYXX
CITATION
ID FETCH-LOGICAL-c220t-8475d6e7174d667c527c757859952637e4443108dbf18d88e2bc062ebc0909413
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001504151700035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1041-4347
IngestDate Sat Nov 29 07:48:32 EST 2025
Wed Aug 27 01:52:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c220t-8475d6e7174d667c527c757859952637e4443108dbf18d88e2bc062ebc0909413
ORCID 0000-0001-9310-3460
0009-0001-3005-8225
0000-0001-5059-8360
0000-0001-9065-6852
0000-0001-6326-9531
0000-0003-3955-1195
PageCount 17
ParticipantIDs crossref_primary_10_1109_TKDE_2025_3565793
ieee_primary_10980364
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref57
ref12
ref56
ref15
ref14
ref53
Glorot (ref65)
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Ahangama (ref26) 2019
ref51
ref50
ref46
ref45
Rezende (ref59)
ref48
ref47
ref42
Kipf (ref37) 2016
ref41
Chen (ref35) 2021; 41
ref44
Kingma (ref64) 2014
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Xiang (ref24) 2024
ref40
ref34
ref36
Yuan (ref60)
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Kingma (ref58) 2013
ref23
ref25
Fernández-Tobías (ref31)
ref20
ref63
ref22
ref21
ref28
ref27
ref29
Gong (ref13)
ref62
ref61
References_xml – ident: ref62
  doi: 10.1145/3038912.3052569
– year: 2019
  ident: ref26
  article-title: Latent user linking for collaborative cross domain recommendation
– ident: ref38
  doi: 10.1109/ICDM58522.2023.00053
– ident: ref47
  doi: 10.1109/TKDE.2023.3295601
– ident: ref57
  doi: 10.1007/s13278-020-0626-2
– ident: ref3
  doi: 10.1145/2724720
– year: 2013
  ident: ref58
  article-title: Auto-encoding variational Bayes
– start-page: 249
  volume-title: Proc. 13th Int. Conf. Artif. Intell. Statist.
  ident: ref65
  article-title: Understanding the difficulty of training deep feedforward neural networks
– ident: ref61
  doi: 10.48550/arXiv.1205.2618
– start-page: 11480
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref60
  article-title: Tenrec: A large-scale multipurpose benchmark dataset for recommender systems
– ident: ref12
  doi: 10.1073/pnas.1218772110
– ident: ref25
  doi: 10.1109/TKDE.2023.3253168
– ident: ref15
  doi: 10.1016/j.dss.2015.03.008
– ident: ref48
  doi: 10.1145/1526709.1526899
– ident: ref55
  doi: 10.1145/3616855.3635830
– ident: ref63
  doi: 10.1145/3637528.3671789
– ident: ref51
  doi: 10.1145/3038912.3052695
– volume: 41
  issue: 12
  year: 2021
  ident: ref35
  article-title: Staged variational autoencoder for heterogeneous one-class collaborative filtering
  publication-title: J. Comput. Appl.
– ident: ref22
  doi: 10.24963/ijcai.2017/343
– start-page: 1278
  volume-title: Proc. 31th Int. Conf. Mach. Learn.
  ident: ref59
  article-title: Stochastic backpropagation and approximate inference in deep generative models
– year: 2014
  ident: ref64
  article-title: Adam: A method for stochastic optimization
– ident: ref42
  doi: 10.1145/3331184.3331267
– ident: ref11
  doi: 10.1145/2365952.2365989
– ident: ref28
  doi: 10.1145/3626772.3657902
– ident: ref29
  doi: 10.1145/3485447.3512166
– ident: ref54
  doi: 10.1145/3336191.3371832
– ident: ref4
  doi: 10.1145/3041021.3054207
– year: 2016
  ident: ref37
  article-title: Variational graph auto-encoders
  publication-title: arXiv:1611.07308
– ident: ref52
  doi: 10.1145/3154793
– start-page: 34
  volume-title: Proc. 1st Workshop New Trends Content-Based Recommender Syst. Co-Located 8th ACM Conf. Recommender Syst.
  ident: ref31
  article-title: Exploiting social tags in matrix factorization models for cross-domain collaborative filtering
– ident: ref17
  doi: 10.1109/TKDE.2019.2941938
– ident: ref16
  doi: 10.1109/TKDE.2019.2946247
– ident: ref32
  doi: 10.1007/978-3-030-15719-7_3
– ident: ref41
  doi: 10.1145/3632751
– ident: ref21
  doi: 10.1109/TKDE.2019.2924656
– ident: ref20
  doi: 10.1016/j.dss.2020.113489
– start-page: 979
  volume-title: Proc. 25th USENIX Secur. Symp.
  ident: ref13
  article-title: You are who you know and how you behave: Attribute inference attacks via users’ social friends and behaviors
– ident: ref23
  doi: 10.1007/978-981-97-5555-4_3
– ident: ref9
  doi: 10.1145/3522762
– ident: ref40
  doi: 10.1145/3460231.3474265
– ident: ref2
  doi: 10.1145/1401890.1401969
– ident: ref19
  doi: 10.1145/3616855.3635816
– ident: ref45
  doi: 10.1145/3539618.3591723
– ident: ref10
  doi: 10.1145/3543507.3583402
– ident: ref46
  doi: 10.1145/3580305.3599768
– ident: ref53
  doi: 10.1145/3442381.3449813
– ident: ref5
  doi: 10.24963/ijcai.2019/587
– ident: ref49
  doi: 10.1007/11760146_14
– ident: ref6
  doi: 10.1145/3269206.3271684
– ident: ref33
  doi: 10.1145/3663364
– ident: ref39
  doi: 10.1007/s10489-024-05360-x
– ident: ref27
  doi: 10.1145/3340531.3412012
– ident: ref30
  doi: 10.1109/TKDE.2021.3104873
– ident: ref1
  doi: 10.1007/978-3-540-73078-1_44
– ident: ref7
  doi: 10.1145/3357384.3357992
– ident: ref36
  doi: 10.1145/3488560.3498436
– ident: ref34
  doi: 10.1145/3178876.3186150
– ident: ref18
  doi: 10.1145/3539618.3591752
– ident: ref50
  doi: 10.1145/2594455
– ident: ref43
  doi: 10.1145/3397271.3401063
– ident: ref44
  doi: 10.1609/aaai.v35i5.16515
– year: 2024
  ident: ref24
  article-title: Coherence-guided preference disentanglement for cross-domain recommendations
– ident: ref14
  doi: 10.1109/TKDE.2005.99
– ident: ref56
  doi: 10.1145/2792838.2800173
– ident: ref8
  doi: 10.1145/3336191.3371793
SSID ssj0008781
Score 2.4659576
Snippet Cross-domain recommendation (CDR) aims to alleviate the data sparsity problem by leveraging the benefits of modeling two domains. However, existing research...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 3916
SubjectTerms Accuracy
attribute inference attacks
Autoencoders
Computational modeling
cross-domain recommendation (CDR)
Data models
Graph convolutional networks
Information leakage
Knowledge transfer
Privacy
Protection
recommendation system
Recommender systems
Variational autoencoders
Title Camouflaged Variational Graph AutoEncoder Against Attribute Inference Attacks for Cross-Domain Recommendation
URI https://ieeexplore.ieee.org/document/10980364
Volume 37
WOSCitedRecordID wos001504151700035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYoCBQimivOSBCSkljV0_xqgPQKCKoVTdoiS2USWaoJLy-7lLUlQGBpYosmzJuYt99_n83RFyI5yR0mntGc4SD2mzXsJM4skk5rFmvrMlPXr2LCcTNZ_rl5qsXnJhrLXl5TPbxdcylm_ydI1HZbDCtcK42S7ZlVJUZK2fbVfJsiIpwAsARYzLOoQJY-6mT8MRQMGg32UY5dPslxHaqqpSGpVx85_TOSKHtfdIw0rdx2THZi3S3FRmoPVCbZGDrTSDJ2Q5iAHgu3fYOgydATiuDwDpPWarpuG6yEcZcttXNHyLF-Aw0rCoKmFZ-rhhBGIbEvIpuLl0gN_lDfMldKcIYZcw16o8U5u8jkfTwYNXl1nw0iDwCw_sU98IC7iOGyFk2g9kilnuMRVZIJi0nIOX4SuTuJ4yStkgSX0RWHhqAIc9dkoaWZ7ZM0ItOBCJZc4pGfBUpNolcY_HjjmjuGKqQ243co8-qmwaUYlCfB2hkiJUUlQrqUPaKPOtjpW4z_9ovyD7OLy6S3tJGsVqba_IXvpVLD5X1-XP8g2Hyr2M
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4ScCBN-JNDpyQCl2SNclxGoNNjInDmHar2iZBSGxDo-P3Y7cdGgcOXKoqSqvUbmJ_cT4b4CryVilvTGClSAOizQapsGmg0kQmRoTeFfToQVf1eno4NM8VWb3gwjjnisNn7oZui1i-nWQz2irDGW40xc2WYbUuJQ9LutbPwqtVUZMUAQbCIiFVFcTEp277j3ctBIO8fiMozmfELzO0UFelMCv32_8c0A5sVf4ja5QK34UlN96D7XltBlZN1T3YXEg0uA-jZoIQ37_j4mHZAOFxtQXIHihfNWvM8klrTOz2KWu8Jm_oMrJGXtbCcqwz5wRSG1HyGTq6rEnfFdxNRtidEYgd4VjLAk0H8HLf6jfbQVVoIcg4D_MALVTdRg6RnbRRpLI6VxnluadkZDwSykmJfkaobepr2mrteJqFEXd4NQgPa-IQVsaTsTsC5tCFSJ3wXisusygzPk1qMvHCWy210MdwPZd7_FHm04gLHBKamJQUk5LiSknHcEAyX-hYivvkj_ZLWG_3n7pxt9N7PIUNelV5svYMVvLpzJ3DWvaVv31OL4of5xuQN8DT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Camouflaged+Variational+Graph+AutoEncoder+Against+Attribute+Inference+Attacks+for+Cross-Domain+Recommendation&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Xiong%2C+Yudi&rft.au=Guo%2C+Yongxin&rft.au=Pan%2C+Weike&rft.au=Yang%2C+Qiang&rft.date=2025-07-01&rft.pub=IEEE&rft.issn=1041-4347&rft.volume=37&rft.issue=7&rft.spage=3916&rft.epage=3932&rft_id=info:doi/10.1109%2FTKDE.2025.3565793&rft.externalDocID=10980364
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon