Distributed Potential Game Optimization to 3-Path Vertex Cover of Networks

3-path vertex cover of networks is a typical optimization problem in network science, which has a wide range of applications. Toward a 3-path vertex cover of networks from distributed optimization, we first established a potential game to describe the 3-path vertex cover problem. Next, we analyze th...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automation science and engineering Vol. 22; pp. 20649 - 20666
Main Authors: Chen, Jie, Wu, Jie, Zhou, Rongpei, Gui, Weihua
Format: Journal Article
Language:English
Published: IEEE 2025
Subjects:
ISSN:1545-5955, 1558-3783
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract 3-path vertex cover of networks is a typical optimization problem in network science, which has a wide range of applications. Toward a 3-path vertex cover of networks from distributed optimization, we first established a potential game to describe the 3-path vertex cover problem. Next, we analyze the inherent relationship between potential game and 3-path vertex cover, that is, only the solution to minimum value of potential function are minimum 3-path vertex covered solutions, and strict Nash equilibriums are intermediate solutions between minimum 3-path vertex covered solutions and 3-path vertex covered solutions. Then, we propose a bounded best response and memory-based distributed algorithm, and prove that our proposed algorithm can guarantee any initial solution converge to a strict Nash equilibrium, and further analyze the complexity of this algorithm. Finally, numerical simulations verify the effectiveness and superiority of our proposed algorithm on some representative networks and benchmark by comparing with existing representative algorithms.This work paves an effective way for distributed optimization that could be modeled as distributed potential game. Note to Practitioners-The 3-path vertex cover problem has a wide range of practical applications. Many optimization algorithms for the vertex cover problem are available in the existing literature. However, those algorithms are essentially centralized algorithms. Thus, one of the main challenges is to develop a distributed algorithm for solving the 3-path vertex cover problem. For this, this work establishes a potential game for the 3-path vertex cover problem, and propose a bounded best response and memory-based distributed algorithm, and prove that it can converge to a strict Nash equilibrium, and further analyze the complexity of this algorithm. In addition, our proposed distributed algorithm can favor better strict Nash equilibrium through the adjustment of bounded strength <inline-formula> <tex-math notation="LaTeX">\epsilon </tex-math></inline-formula> and memory length m. This work can serve as a supplement to the existing works for solving the 3-path vertex cover problem.
AbstractList 3-path vertex cover of networks is a typical optimization problem in network science, which has a wide range of applications. Toward a 3-path vertex cover of networks from distributed optimization, we first established a potential game to describe the 3-path vertex cover problem. Next, we analyze the inherent relationship between potential game and 3-path vertex cover, that is, only the solution to minimum value of potential function are minimum 3-path vertex covered solutions, and strict Nash equilibriums are intermediate solutions between minimum 3-path vertex covered solutions and 3-path vertex covered solutions. Then, we propose a bounded best response and memory-based distributed algorithm, and prove that our proposed algorithm can guarantee any initial solution converge to a strict Nash equilibrium, and further analyze the complexity of this algorithm. Finally, numerical simulations verify the effectiveness and superiority of our proposed algorithm on some representative networks and benchmark by comparing with existing representative algorithms.This work paves an effective way for distributed optimization that could be modeled as distributed potential game. Note to Practitioners-The 3-path vertex cover problem has a wide range of practical applications. Many optimization algorithms for the vertex cover problem are available in the existing literature. However, those algorithms are essentially centralized algorithms. Thus, one of the main challenges is to develop a distributed algorithm for solving the 3-path vertex cover problem. For this, this work establishes a potential game for the 3-path vertex cover problem, and propose a bounded best response and memory-based distributed algorithm, and prove that it can converge to a strict Nash equilibrium, and further analyze the complexity of this algorithm. In addition, our proposed distributed algorithm can favor better strict Nash equilibrium through the adjustment of bounded strength <inline-formula> <tex-math notation="LaTeX">\epsilon </tex-math></inline-formula> and memory length m. This work can serve as a supplement to the existing works for solving the 3-path vertex cover problem.
Author Gui, Weihua
Zhou, Rongpei
Wu, Jie
Chen, Jie
Author_xml – sequence: 1
  givenname: Jie
  orcidid: 0000-0002-7335-995X
  surname: Chen
  fullname: Chen, Jie
  email: jchen202209@163.com
  organization: College of Electronic Engineering, National University of Defense Technology, Hefei, China
– sequence: 2
  givenname: Jie
  orcidid: 0000-0001-5410-8541
  surname: Wu
  fullname: Wu, Jie
  email: jiewu20@jiangnan.edu.cn
  organization: School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China
– sequence: 3
  givenname: Rongpei
  orcidid: 0000-0001-6367-2742
  surname: Zhou
  fullname: Zhou, Rongpei
  email: zhourp@ncu.edu.cn
  organization: School of Information Engineering, Nanchang University, Nanchang, China
– sequence: 4
  givenname: Weihua
  orcidid: 0000-0003-0312-436X
  surname: Gui
  fullname: Gui, Weihua
  email: gwh@csu.edu.cn
  organization: School of Automation, Central South University, Changsha, China
BookMark eNpFkMtKAzEYhYMo2FYfQHCRF5ia-2SWpdaqFFuwuh0ykz8YbScliden16EFV-cszncW3xAdd6EDhC4oGVNKqqv15HE2ZoTJMVeEaaqP0IBKqQtean7cdyELWUl5ioYpvRLChK7IAN1f-5Sjb94zWLwKGbrszQbPzRbwcpf91v-Y7EOHc8C8WJn8gp8hZvjC0_ABEQeHHyB_hviWztCJM5sE54ccoaeb2Xp6WyyW87vpZFG0jJFcMMUbaRpXEmu0FYpzzR2lXABvW9E0TpUgQCphVEkq66i1pZBMtWCaUjvLR4juf9sYUorg6l30WxO_a0rqXkbdy6h7GfVBxh9zuWc8APzvKRWMVZr_Ail2Xas
CODEN ITASC7
Cites_doi 10.1126/science.286.5439.509
10.1109/JIOT.2018.2890431
10.1109/TCST.2015.2403475
10.1109/TNET.2024.3511598
10.1109/ACC.2014.6858606
10.1016/j.tcs.2019.03.013
10.1109/TASE.2022.3226444
10.1038/30918
10.1109/TSMCB.2009.2035100
10.1109/TASE.2023.3320708
10.1109/JSYST.2022.3176535
10.1016/j.disopt.2015.11.003
10.1109/TITS.2024.3369190
10.1515/9781400841356.38
10.1137/0211045
10.1016/j.ipl.2015.12.002
10.1016/j.physrep.2007.04.004
10.1016/j.tcs.2011.09.009
10.1006/game.1996.0044
10.1016/j.ipl.2011.04.009
10.1201/b10975
10.1016/j.tcs.2011.09.013
10.1109/TNNLS.2024.3495836
10.1007/978-3-319-55911-7_47
10.1109/TASE.2023.3339751
10.1007/s10878-018-00372-z
10.1109/TIE.2018.2864714
10.1109/JSAC.2015.2430172
10.1007/978-3-319-21398-9_37
10.1109/TNSE.2024.3439744
10.1007/978-3-642-12368-9_8
10.1017/CBO9781139020411
10.1109/TASE.2022.3171446
10.1109/TASE.2024.3367722
10.1109/TAC.2015.2414817
10.1109/JIOT.2024.3366194
10.1109/TASE.2023.3336640
10.1109/TAC.2018.2817161
10.1109/TCCN.2022.3152507
10.1109/TVT.2022.3214925
10.14778/2732951.2732963
10.1109/TCNS.2024.3395725
10.1109/TITS.2024.3521460
10.1109/TVT.2025.3539382
10.1109/TNSE.2022.3164094
10.1103/PhysRevC.110.044903
10.1073/pnas.36.1.48
10.1109/JIOT.2021.3068601
10.1016/j.ipl.2014.06.018
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TASE.2025.3602818
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3783
EndPage 20666
ExternalDocumentID 10_1109_TASE_2025_3602818
11142298
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61321003
  funderid: 10.13039/501100001809
– fundername: Youth Fund of the National Natural Science Foundation of China
  grantid: 62103166; 62103178
– fundername: Fund Project
  grantid: KY24T305
– fundername: Zhejiang Provincial Natural Science Foundation of China
  grantid: LZ24F030009
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
ID FETCH-LOGICAL-c220t-263b5abf70da8d463383f1134e3cc4bbf67e4e564a6709df1dd74526ceab78fd3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001569792300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-5955
IngestDate Sat Nov 29 07:30:53 EST 2025
Mon Dec 08 03:37:31 EST 2025
IsPeerReviewed false
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c220t-263b5abf70da8d463383f1134e3cc4bbf67e4e564a6709df1dd74526ceab78fd3
ORCID 0000-0001-6367-2742
0000-0003-0312-436X
0000-0002-7335-995X
0000-0001-5410-8541
PageCount 18
ParticipantIDs crossref_primary_10_1109_TASE_2025_3602818
ieee_primary_11142298
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref43
  doi: 10.1126/science.286.5439.509
– ident: ref6
  doi: 10.1109/JIOT.2018.2890431
– ident: ref22
  doi: 10.1109/TCST.2015.2403475
– ident: ref12
  doi: 10.1109/TNET.2024.3511598
– ident: ref46
  doi: 10.1109/ACC.2014.6858606
– ident: ref38
  doi: 10.1016/j.tcs.2019.03.013
– ident: ref16
  doi: 10.1109/TASE.2022.3226444
– ident: ref42
  doi: 10.1038/30918
– ident: ref39
  doi: 10.1109/TSMCB.2009.2035100
– ident: ref1
  doi: 10.1109/TASE.2023.3320708
– ident: ref20
  doi: 10.1109/JSYST.2022.3176535
– ident: ref36
  doi: 10.1016/j.disopt.2015.11.003
– ident: ref10
  doi: 10.1109/TITS.2024.3369190
– ident: ref41
  doi: 10.1515/9781400841356.38
– ident: ref29
  doi: 10.1137/0211045
– ident: ref35
  doi: 10.1016/j.ipl.2015.12.002
– ident: ref44
  doi: 10.1016/j.physrep.2007.04.004
– ident: ref30
  doi: 10.1016/j.tcs.2011.09.009
– ident: ref13
  doi: 10.1006/game.1996.0044
– ident: ref27
  doi: 10.1016/j.ipl.2011.04.009
– ident: ref45
  doi: 10.1201/b10975
– ident: ref31
  doi: 10.1016/j.tcs.2011.09.013
– ident: ref3
  doi: 10.1109/TNNLS.2024.3495836
– ident: ref37
  doi: 10.1007/978-3-319-55911-7_47
– ident: ref5
  doi: 10.1109/TASE.2023.3339751
– ident: ref32
  doi: 10.1007/s10878-018-00372-z
– ident: ref18
  doi: 10.1109/TIE.2018.2864714
– ident: ref21
  doi: 10.1109/JSAC.2015.2430172
– ident: ref34
  doi: 10.1007/978-3-319-21398-9_37
– ident: ref49
  doi: 10.1109/TNSE.2024.3439744
– ident: ref26
  doi: 10.1007/978-3-642-12368-9_8
– ident: ref40
  doi: 10.1017/CBO9781139020411
– ident: ref7
  doi: 10.1109/TASE.2022.3171446
– ident: ref24
  doi: 10.1109/TASE.2024.3367722
– ident: ref11
  doi: 10.1109/TAC.2015.2414817
– ident: ref23
  doi: 10.1109/JIOT.2024.3366194
– ident: ref19
  doi: 10.1109/TASE.2023.3336640
– ident: ref47
  doi: 10.1109/TAC.2018.2817161
– ident: ref17
  doi: 10.1109/TCCN.2022.3152507
– ident: ref14
  doi: 10.1109/TVT.2022.3214925
– ident: ref28
  doi: 10.14778/2732951.2732963
– ident: ref25
  doi: 10.1109/TCNS.2024.3395725
– ident: ref2
  doi: 10.1109/TITS.2024.3521460
– ident: ref4
  doi: 10.1109/TVT.2025.3539382
– ident: ref8
  doi: 10.1109/TNSE.2022.3164094
– ident: ref48
  doi: 10.1103/PhysRevC.110.044903
– ident: ref9
  doi: 10.1073/pnas.36.1.48
– ident: ref15
  doi: 10.1109/JIOT.2021.3068601
– ident: ref33
  doi: 10.1016/j.ipl.2014.06.018
SSID ssj0024890
Score 2.389364
Snippet 3-path vertex cover of networks is a typical optimization problem in network science, which has a wide range of applications. Toward a 3-path vertex cover of...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 20649
SubjectTerms 3-path vertex cover
Analytical models
Approximation algorithms
Artificial intelligence
Automation
bounded best response
Complexity theory
Cost function
Distributed algorithms
distributed potential game
Games
memory length
Nash equilibrium
Numerical models
strict Nash equilibrium
Title Distributed Potential Game Optimization to 3-Path Vertex Cover of Networks
URI https://ieeexplore.ieee.org/document/11142298
Volume 22
WOSCitedRecordID wos001569792300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-3783
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024890
  issn: 1545-5955
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVoxQADn0WUL3lgQnKb1PHXWJUWxFAqUVC3yI7PEkMb1KaIn0_sBLUMDGxRFEvRs3S-O997D6FbxR3jhjliGdckUUaWcZABKYOk1RkIKpQJZhNiPJazmZrUZPXAhQGAMHwGHf8Y7vJtnq19q6wbB-Knkg3UEIJXZK2NsJ4MDRWfEhCmGKuvMONIdaf9l2FZCvZYh_LIyx_9OoS2XFXCoTI6_OfvHKGDOnvE_Wq7j9EOLE7Q_pam4Cl6uvdSuN7FCiye5IWfBiqXPOg54OcyPsxr4iUuckzJpEwA8RssC_jCAz_NiXOHx9Vo-KqFXkfD6eCR1IYJJOv1ooL0ODVMGyciq6VNuC8_XRzTBGiWJcY4LiABxhPtVdusi60V3mI8A22EdJaeoeYiX8A5wl4WjVmhRcIhcdwaTWMnYi01lxE41kZ3PwimH5UuRhrqiUilHu7Uw53WcLdRy6O3-bAG7uKP95dozy-vOh1XqFks13CNdrPP4n21vAnb_g0zSasF
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60CurBZ8X63IMnIW0e-0iOpbZWrbFgld7CbnYWPLSRNhV_vtlNpPXgwVsISQhfwuzM7Hzfh9B1xDRlkmpHUSYcEsmwiIMUnCJIKpECD3gkrdkEj-NwPI6GFVndcmEAwA6fQdMc2r18laUL0ypreZb4GYXraIMS4rslXWsprRfalopJChwaUVptYnpu1Bq1X7pFMejTZsBcI4D0axla8VWxy0pv758vtI92q_wRt8sPfoDWYHqIdlZUBY_Qw60RwzU-VqDwMMvNPFBxy52YAH4uIsSkol7iPMOBMyxSQPwGsxy-cMfMc-JM47gcDp_X0WuvO-r0ncoywUl9380dnwWSCqm5q0SoCDMFqPa8gECQpkRKzTgQoIwIo9umtKcUNybjKQjJQ62CY1SbZlM4QdgIo1HFBScMiGZKisDT3BOhYKELmjbQzQ-CyUepjJHYisKNEgN3YuBOKrgbqG7QW15YAXf6x_krtNUfPQ2SwX38eIa2zaPKvsc5quWzBVygzfQzf5_PLu0v8A1Joa5M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Potential+Game+Optimization+to+3-Path+Vertex+Cover+of+Networks&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Chen%2C+Jie&rft.au=Wu%2C+Jie&rft.au=Zhou%2C+Rongpei&rft.au=Gui%2C+Weihua&rft.date=2025&rft.pub=IEEE&rft.issn=1545-5955&rft.volume=22&rft.spage=20649&rft.epage=20666&rft_id=info:doi/10.1109%2FTASE.2025.3602818&rft.externalDocID=11142298
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon