Computation of the Optimal Error Exponent Function for Fixed-Length Lossy Source Coding in Discrete Memoryless Sources

Marton's optimal error exponent for the lossy source coding problem is defined as a non-convex optimization problem. This fact had prevented us to develop an efficient algorithm to compute it. This problem is caused by the fact that the rate-distortion function <inline-formula> <tex-ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory Jg. 71; H. 5; S. 3360 - 3372
1. Verfasser: Jitsumatsu, Yutaka
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 01.05.2025
Schlagworte:
ISSN:0018-9448, 1557-9654
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Marton's optimal error exponent for the lossy source coding problem is defined as a non-convex optimization problem. This fact had prevented us to develop an efficient algorithm to compute it. This problem is caused by the fact that the rate-distortion function <inline-formula> <tex-math notation="LaTeX">R(\Delta |P) </tex-math></inline-formula> is potentially non-concave in the probability distribution P for a fixed distortion level <inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula>. The main contribution of this paper is the development of a parametric expression that is in perfect agreement with the inverse function of the Marton exponent. This representation has two layers. The inner layer is convex optimization and can be computed efficiently. The outer layer, on the other hand, is a non-convex optimization with respect to two parameters. We give a method for computing the Marton exponent based on this representation.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2025.3547033