Adaptive Extended Kalman Filtering for Battery State of Charge Estimation on STM32

Accurate and computationally light algorithms for estimating the state of charge (SoC) of a battery's cells are crucial for effective battery management on embedded systems. In this letter, we propose an adaptive extended Kalman filter (AEKF) for SoC estimation using a covariance adaptation tec...

Full description

Saved in:
Bibliographic Details
Published in:IEEE embedded systems letters Vol. 17; no. 3; pp. 160 - 163
Main Authors: Barros, Antonio, Peretti, Edoardo, Fabroni, Davide, Carrera, Diego, Fragneto, Pasqualina, Boracchi, Giacomo
Format: Journal Article
Language:English
Published: IEEE 01.06.2025
Subjects:
ISSN:1943-0663, 1943-0671
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Accurate and computationally light algorithms for estimating the state of charge (SoC) of a battery's cells are crucial for effective battery management on embedded systems. In this letter, we propose an adaptive extended Kalman filter (AEKF) for SoC estimation using a covariance adaptation technique based on maximum likelihood estimation-a novelty in this domain. Furthermore, we tune a key design parameter-the estimation window size-to obtain an optimal memory-performance tradeoff, and experimentally demonstrate our solution achieves superior estimation accuracy with respect to existing alternative methods. Finally, we present a fully custom implementation of the AEKF for a general-purpose low-cost STM32 microcontroller, showing it can be deployed with minimal computational requirements adequate for real-world usage.
AbstractList Accurate and computationally light algorithms for estimating the state of charge (SoC) of a battery's cells are crucial for effective battery management on embedded systems. In this letter, we propose an adaptive extended Kalman filter (AEKF) for SoC estimation using a covariance adaptation technique based on maximum likelihood estimation-a novelty in this domain. Furthermore, we tune a key design parameter-the estimation window size-to obtain an optimal memory-performance tradeoff, and experimentally demonstrate our solution achieves superior estimation accuracy with respect to existing alternative methods. Finally, we present a fully custom implementation of the AEKF for a general-purpose low-cost STM32 microcontroller, showing it can be deployed with minimal computational requirements adequate for real-world usage.
Author Carrera, Diego
Boracchi, Giacomo
Barros, Antonio
Fabroni, Davide
Peretti, Edoardo
Fragneto, Pasqualina
Author_xml – sequence: 1
  givenname: Antonio
  surname: Barros
  fullname: Barros, Antonio
  organization: System Research and Applications Department, STMicroelectronics SRL, Agrate Brianza, Italy
– sequence: 2
  givenname: Edoardo
  orcidid: 0009-0008-2076-0919
  surname: Peretti
  fullname: Peretti, Edoardo
  email: edoardo.peretti@polimi.it
  organization: Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
– sequence: 3
  givenname: Davide
  orcidid: 0009-0007-5689-9317
  surname: Fabroni
  fullname: Fabroni, Davide
  organization: Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
– sequence: 4
  givenname: Diego
  orcidid: 0000-0002-5455-5867
  surname: Carrera
  fullname: Carrera, Diego
  organization: System Research and Applications Department, STMicroelectronics SRL, Agrate Brianza, Italy
– sequence: 5
  givenname: Pasqualina
  surname: Fragneto
  fullname: Fragneto, Pasqualina
  organization: System Research and Applications Department, STMicroelectronics SRL, Agrate Brianza, Italy
– sequence: 6
  givenname: Giacomo
  orcidid: 0000-0002-1650-3054
  surname: Boracchi
  fullname: Boracchi, Giacomo
  organization: Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
BookMark eNpNkE9LAzEQxYNUsNbePXjIF9g6-bfZPdbSqlgRbD0v2WRSV9rdkg1iv70pLeIwMG9g3mP4XZNB27VIyC2DCWNQ3i_nqwkHLidCFqVQ_IIMWSlFBrlmgz-diysy7vsvSKWkVkINyfvUmX1svpHOfyK2Dh19Mdudaemi2UYMTbuhvgv0wcS0Hegqmoi083T2acImufrY7ExsupamXq1fBb8hl95sexyf54h8LObr2VO2fHt8nk2XmeVMx8yCBZDaFd6i5TUWuVZgnatFbazlpVIMdZFkrRF84b1gUjiwos4dcp6LEYFTrg1d3wf01T6kX8KhYlAdsVQJS3XEUp2xJMvdydIg4r9zLRMRLX4BRRdgVw
CODEN ESLMAP
Cites_doi 10.1109/TVT.2011.2132812
10.3390/en14144074
10.1109/TVT.2012.2222684
10.1109/LES.2021.3078443
10.5334/jors.309
10.1145/3462203.3475878
10.1016/j.actaastro.2020.10.016
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/LES.2024.3489352
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1943-0671
EndPage 163
ExternalDocumentID 10_1109_LES_2024_3489352
10740057
Genre orig-research
GroupedDBID 0R~
29G
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
ID FETCH-LOGICAL-c217t-c0c0047d8fcec2be86750cddb3bacc29551e78accb7e0f8ff3143d0c3b6de2263
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001508288400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1943-0663
IngestDate Sat Nov 29 07:53:41 EST 2025
Wed Aug 27 01:47:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c217t-c0c0047d8fcec2be86750cddb3bacc29551e78accb7e0f8ff3143d0c3b6de2263
ORCID 0000-0002-1650-3054
0009-0007-5689-9317
0000-0002-5455-5867
0009-0008-2076-0919
PageCount 4
ParticipantIDs crossref_primary_10_1109_LES_2024_3489352
ieee_primary_10740057
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE embedded systems letters
PublicationTitleAbbrev LES
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref7
ref4
ref3
ref6
ref5
ref2
ref1
References_xml – ident: ref6
  doi: 10.1109/TVT.2011.2132812
– ident: ref2
  doi: 10.3390/en14144074
– ident: ref5
  doi: 10.1109/TVT.2012.2222684
– ident: ref1
  doi: 10.1109/LES.2021.3078443
– ident: ref4
  doi: 10.5334/jors.309
– ident: ref3
  doi: 10.1145/3462203.3475878
– ident: ref7
  doi: 10.1016/j.actaastro.2020.10.016
SSID ssj0000547535
Score 2.336177
Snippet Accurate and computationally light algorithms for estimating the state of charge (SoC) of a battery's cells are crucial for effective battery management on...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 160
SubjectTerms Adaptive extended Kalman filter (AEKF)
Batteries
Computational modeling
Covariance matrices
Data structures
embedded implementation
Integrated circuit modeling
Kalman filters
Load modeling
Maximum likelihood estimation
State of charge
state of charge (SoC) estimation
STM32
Voltage measurement
Title Adaptive Extended Kalman Filtering for Battery State of Charge Estimation on STM32
URI https://ieeexplore.ieee.org/document/10740057
Volume 17
WOSCitedRecordID wos001508288400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1943-0671
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000547535
  issn: 1943-0663
  databaseCode: RIE
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5ueNCDPyfOX-TgxUO3Numa9DhkQ3AOcVN2K03yIgPtxtwE_3tf0k7mwYPQQykplC80-d57-b5HyLVQkTQgeZBb2Qli4SxvI60CZZNEWogNeBX_y0AMh3IySR8rsbrXwgCAP3wGLXfra_lmplcuVdZ2hwederJGakKIUqz1k1BB7oHUu-OryLHvkMfXZckwbQ96IwwGWdzizm2lw35tQxt9Vfy20t__5wcdkL2KP9JuOeGHZAuKI7K74Sp4TJ66Jp-7VYz2qgw3vc_f3vOC9qeuNo6DKFJVWlprflHPN-nMUld6f8W38K8vBY0Ur9H4gbMGee73xrd3QdU6IdAYYywDHWrnA2mk1aCZAolxQaiNUVzlWrMUeRIIibdKQGiltRx5kwk1V4kBZGT8hNSLWQGnhEaGGc1i64zAYqFyFZqIISdPcJXMEc0muVkjmc1Lh4zMRxZhmiHqmUM9q1BvkoYDcWNcid_ZH8_PyQ5z_XZ91uOC1JeLFVySbf25nH4srvz8fwM1Ya0v
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF20CurBz4r1cw9ePKRNdjfJ5likpdK0iK3SW8h-SUHbUlvBf-_sJpV68CDksIQNhJdk82Zm3xuEbmMRcKU59XLDQ4_F1vI2kMITJoq40Uxpp-J_SeN-n49GyWMpVndaGK2123ym63boavlqKpc2VdawmwetenITbYWMkaCQa_2kVIB9APkOXR2ZuR55dFWY9JNG2hpAOEhYnVq_lZD8-hGtdVZxP5b2wT9v6RDtlwwSN4tHfoQ29OQY7a35Cp6gp6bKZ3Ydw60yx427-dt7PsHtsa2OwyQMZBUX5ppf2DFOPDXYFt9f4Sr47gtJI4ZjMOxRUkXP7dbwvuOVzRM8CVHGwpO-tE6QihupJRGaQ2TgS6UEFbmUJAGmpGMOQxFr33BjKDAn5UsqIqWBk9FTVJlMJ_oM4UARJQkz1gqMxSIXvgoIsPII1skc0KyhuxWS2azwyMhcbOEnGaCeWdSzEvUaqloQ1-YV-J3_cf4G7XSGvTRLH_rdC7RLbPddlwO5RJXFfKmv0Lb8XIw_5tfuXfgGaR6wdg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Extended+Kalman+Filtering+for+Battery+State+of+Charge+Estimation+on+STM32&rft.jtitle=IEEE+embedded+systems+letters&rft.au=Barros%2C+Ant%C3%B3nio&rft.au=Peretti%2C+Edoardo&rft.au=Fabroni%2C+Davide&rft.au=Carrera%2C+Diego&rft.date=2025-06-01&rft.issn=1943-0663&rft.eissn=1943-0671&rft.volume=17&rft.issue=3&rft.spage=160&rft.epage=163&rft_id=info:doi/10.1109%2FLES.2024.3489352&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LES_2024_3489352
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1943-0663&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1943-0663&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1943-0663&client=summon