Adaptive Extended Kalman Filtering for Battery State of Charge Estimation on STM32

Accurate and computationally light algorithms for estimating the state of charge (SoC) of a battery's cells are crucial for effective battery management on embedded systems. In this letter, we propose an adaptive extended Kalman filter (AEKF) for SoC estimation using a covariance adaptation tec...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE embedded systems letters Ročník 17; číslo 3; s. 160 - 163
Hlavní autoři: Barros, Antonio, Peretti, Edoardo, Fabroni, Davide, Carrera, Diego, Fragneto, Pasqualina, Boracchi, Giacomo
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.06.2025
Témata:
ISSN:1943-0663, 1943-0671
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Accurate and computationally light algorithms for estimating the state of charge (SoC) of a battery's cells are crucial for effective battery management on embedded systems. In this letter, we propose an adaptive extended Kalman filter (AEKF) for SoC estimation using a covariance adaptation technique based on maximum likelihood estimation-a novelty in this domain. Furthermore, we tune a key design parameter-the estimation window size-to obtain an optimal memory-performance tradeoff, and experimentally demonstrate our solution achieves superior estimation accuracy with respect to existing alternative methods. Finally, we present a fully custom implementation of the AEKF for a general-purpose low-cost STM32 microcontroller, showing it can be deployed with minimal computational requirements adequate for real-world usage.
ISSN:1943-0663
1943-0671
DOI:10.1109/LES.2024.3489352