Decoding Algorithms of Twisted GRS Codes and Twisted Goppa Codes

In this paper, we use extended Euclid's algorithm to propose new decoding algorithms for two classes of maximum distance separable (MDS) twisted generalized Reed-Solomon (TGRS) codes of parameters <inline-formula> <tex-math notation="LaTeX">[n, n-t, t+1] </tex-math>&...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory Jg. 71; H. 2; S. 1018 - 1027
Hauptverfasser: Sun, Huan, Yue, Qin, Jia, Xue, Li, Chengju
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 01.02.2025
Schlagworte:
ISSN:0018-9448, 1557-9654
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we use extended Euclid's algorithm to propose new decoding algorithms for two classes of maximum distance separable (MDS) twisted generalized Reed-Solomon (TGRS) codes of parameters <inline-formula> <tex-math notation="LaTeX">[n, n-t, t+1] </tex-math></inline-formula> over <inline-formula> <tex-math notation="LaTeX">\Bbb F_{q} </tex-math></inline-formula>. For even t, the algorithms can correct <inline-formula> <tex-math notation="LaTeX">\frac {t}{2} </tex-math></inline-formula> errors with time complexity <inline-formula> <tex-math notation="LaTeX">O(qn) </tex-math></inline-formula>. Moreover, we also give a new decoding algorithm for a class of twisted Goppa codes. For even degree t of a Goppa polynomial, it can also correct <inline-formula> <tex-math notation="LaTeX">\frac {t}{2} </tex-math></inline-formula> errors, which generalizes a <inline-formula> <tex-math notation="LaTeX">\lfloor \frac {t-1}{2}\rfloor </tex-math></inline-formula>-error-correcting decoding algorithm by Sui and Yue (2023).
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2024.3509895