Decoding Algorithms of Twisted GRS Codes and Twisted Goppa Codes
In this paper, we use extended Euclid's algorithm to propose new decoding algorithms for two classes of maximum distance separable (MDS) twisted generalized Reed-Solomon (TGRS) codes of parameters <inline-formula> <tex-math notation="LaTeX">[n, n-t, t+1] </tex-math>&...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on information theory Jg. 71; H. 2; S. 1018 - 1027 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.02.2025
|
| Schlagworte: | |
| ISSN: | 0018-9448, 1557-9654 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this paper, we use extended Euclid's algorithm to propose new decoding algorithms for two classes of maximum distance separable (MDS) twisted generalized Reed-Solomon (TGRS) codes of parameters <inline-formula> <tex-math notation="LaTeX">[n, n-t, t+1] </tex-math></inline-formula> over <inline-formula> <tex-math notation="LaTeX">\Bbb F_{q} </tex-math></inline-formula>. For even t, the algorithms can correct <inline-formula> <tex-math notation="LaTeX">\frac {t}{2} </tex-math></inline-formula> errors with time complexity <inline-formula> <tex-math notation="LaTeX">O(qn) </tex-math></inline-formula>. Moreover, we also give a new decoding algorithm for a class of twisted Goppa codes. For even degree t of a Goppa polynomial, it can also correct <inline-formula> <tex-math notation="LaTeX">\frac {t}{2} </tex-math></inline-formula> errors, which generalizes a <inline-formula> <tex-math notation="LaTeX">\lfloor \frac {t-1}{2}\rfloor </tex-math></inline-formula>-error-correcting decoding algorithm by Sui and Yue (2023). |
|---|---|
| ISSN: | 0018-9448 1557-9654 |
| DOI: | 10.1109/TIT.2024.3509895 |