Decoding Algorithms of Twisted GRS Codes and Twisted Goppa Codes

In this paper, we use extended Euclid's algorithm to propose new decoding algorithms for two classes of maximum distance separable (MDS) twisted generalized Reed-Solomon (TGRS) codes of parameters <inline-formula> <tex-math notation="LaTeX">[n, n-t, t+1] </tex-math>&...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on information theory Ročník 71; číslo 2; s. 1018 - 1027
Hlavní autoři: Sun, Huan, Yue, Qin, Jia, Xue, Li, Chengju
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.02.2025
Témata:
ISSN:0018-9448, 1557-9654
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we use extended Euclid's algorithm to propose new decoding algorithms for two classes of maximum distance separable (MDS) twisted generalized Reed-Solomon (TGRS) codes of parameters <inline-formula> <tex-math notation="LaTeX">[n, n-t, t+1] </tex-math></inline-formula> over <inline-formula> <tex-math notation="LaTeX">\Bbb F_{q} </tex-math></inline-formula>. For even t, the algorithms can correct <inline-formula> <tex-math notation="LaTeX">\frac {t}{2} </tex-math></inline-formula> errors with time complexity <inline-formula> <tex-math notation="LaTeX">O(qn) </tex-math></inline-formula>. Moreover, we also give a new decoding algorithm for a class of twisted Goppa codes. For even degree t of a Goppa polynomial, it can also correct <inline-formula> <tex-math notation="LaTeX">\frac {t}{2} </tex-math></inline-formula> errors, which generalizes a <inline-formula> <tex-math notation="LaTeX">\lfloor \frac {t-1}{2}\rfloor </tex-math></inline-formula>-error-correcting decoding algorithm by Sui and Yue (2023).
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2024.3509895