Productive Programming of GPU Clusters with OmpSs

Clusters of GPUs are emerging as a new computational scenario. Programming them requires the use of hybrid models that increase the complexity of the applications, reducing the productivity of programmers. We present the implementation of OmpSs for clusters of GPUs, which supports asynchrony and het...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2012 IEEE 26th International Parallel and Distributed Processing Symposium s. 557 - 568
Hlavní autori: Bueno, J., Planas, J., Duran, A., Badia, R. M., Martorell, X., Ayguade, E., Labarta, J.
Médium: Konferenčný príspevok.. Publikácia
Jazyk:English
Vydavateľské údaje: IEEE 01.05.2012
Predmet:
ISBN:1467309753, 9781467309752
ISSN:1530-2075
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Clusters of GPUs are emerging as a new computational scenario. Programming them requires the use of hybrid models that increase the complexity of the applications, reducing the productivity of programmers. We present the implementation of OmpSs for clusters of GPUs, which supports asynchrony and heterogeneity for task parallelism. It is based on annotating a serial application with directives that are translated by the compiler. With it, the same program that runs sequentially in a node with a single GPU can run in parallel in multiple GPUs either local (single node) or remote (cluster of GPUs). Besides performing a task-based parallelization, the runtime system moves the data as needed between the different nodes and GPUs minimizing the impact of communication by using affinity scheduling, caching, and by overlapping communication with the computational task. We show several applications programmed with OmpSs and their performance with multiple GPUs in a local node and in remote nodes. The results show good tradeoff between performance and effort from the programmer.
ISBN:1467309753
9781467309752
ISSN:1530-2075
DOI:10.1109/IPDPS.2012.58