A numerical approach for singularly perturbed parabolic reaction-diffusion problem on a modified graded mesh
This paper addresses the numerical approximations of solutions for one dimensional parabolic singularly perturbed problems of reaction-diffusion type. The solution of this class of problems exhibit boundary layers on both sides of the domain. The proposed numerical method involves combining the back...
Saved in:
| Published in: | Journal of numerical analysis and approximation theory Vol. 54; no. 1; pp. 117 - 139 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Publishing House of the Romanian Academy
30.06.2025
|
| Subjects: | |
| ISSN: | 2457-6794, 2501-059X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper addresses the numerical approximations of solutions for one dimensional parabolic singularly perturbed problems of reaction-diffusion type. The solution of this class of problems exhibit boundary layers on both sides of the domain. The proposed numerical method involves combining the backward Euler method on a uniform mesh for temporal discretization and an upwind finite difference scheme for spatial discretization on a modified graded mesh. The numerical solutions presented here are calculated using a modified graded mesh and the error bounds are rigorously assessed within the discrete maximum norm. The primary focus of this study is to underscore the crucial importance of utilizing a modified graded mesh to enhance the order of convergence in numerical solutions. The method demonstrates uniform convergence, with first-order accuracy in time and nearly second-order accuracy in space concerning the perturbation parameter. Theoretical findings are supported by numerical results presented in the paper. |
|---|---|
| AbstractList | This paper addresses the numerical approximations of solutions for one dimensional parabolic singularly perturbed problems of reaction-diffusion type. The solution of this class of problems exhibit boundary layers on both sides of the domain. The proposed numerical method involves combining the backward Euler method on a uniform mesh for temporal discretization and an upwind finite difference scheme for spatial discretization on a modified graded mesh. The numerical solutions presented here are calculated using a modified graded mesh and the error bounds are rigorously assessed within the discrete maximum norm. The primary focus of this study is to underscore the crucial importance of utilizing a modified graded mesh to enhance the order of convergence in numerical solutions. The method demonstrates uniform convergence, with first-order accuracy in time and nearly second-order accuracy in space concerning the perturbation parameter. Theoretical findings are supported by numerical results presented in the paper. |
| Author | Gowrisankar, Subramaniam Sah, Kishun Kumar |
| Author_xml | – sequence: 1 givenname: Kishun Kumar orcidid: 0009-0005-2887-664X surname: Sah fullname: Sah, Kishun Kumar – sequence: 2 givenname: Subramaniam surname: Gowrisankar fullname: Gowrisankar, Subramaniam |
| BookMark | eNo9kMtqwzAQRUVpoWmabdf6Aad6-aFlCH0EAt200J0YS6NEwbaM7Czy93WStqt7mOGexX0gt13skJAnzpZSai2fDx3AmCue8ZzLGzITOeMZy_X37cQqL7Oi1OqeLIbhwBjjpZCq4jPSrGh3bDEFCw2Fvk8R7J76mOgQut2xgdScaI9pPKYaHe0hQR2bYGlCsGOIXeaC98dhIjqV6wZbOiHQNk6PMFV2CdwULQ77R3LnoRlw8Ztz8vX68rl-z7Yfb5v1aptZwUuZcaydQl2hYqLKneRSiaLwTqiaeadyXVteo3BKIeQFMCcrJ5X1CMI7BlLOyebqdREOpk-hhXQyEYK5HGLaGUhjsA0ap2XplAdWMq-UZCBKXetSa6UrjfLsWl5dNsVhSOj_fZyZy_Tmb3pznl7-AFavew0 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.33993/jnaat541-1513 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 2501-059X |
| EndPage | 139 |
| ExternalDocumentID | oai_doaj_org_article_d937d4fa070f4430a279b97994989e33 10_33993_jnaat541_1513 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ |
| ID | FETCH-LOGICAL-c2173-1ebd4e98e40285d3134266fd24b0fd459bc1be2d44ea56a0d38d34cfea2fd0a33 |
| IEDL.DBID | DOA |
| ISSN | 2457-6794 |
| IngestDate | Fri Oct 03 12:42:27 EDT 2025 Sat Nov 29 06:48:37 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2173-1ebd4e98e40285d3134266fd24b0fd459bc1be2d44ea56a0d38d34cfea2fd0a33 |
| ORCID | 0009-0005-2887-664X |
| OpenAccessLink | https://doaj.org/article/d937d4fa070f4430a279b97994989e33 |
| PageCount | 23 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d937d4fa070f4430a279b97994989e33 crossref_primary_10_33993_jnaat541_1513 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-30 |
| PublicationDateYYYYMMDD | 2025-06-30 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of numerical analysis and approximation theory |
| PublicationYear | 2025 |
| Publisher | Publishing House of the Romanian Academy |
| Publisher_xml | – name: Publishing House of the Romanian Academy |
| SSID | ssj0001723481 |
| Score | 2.296092 |
| Snippet | This paper addresses the numerical approximations of solutions for one dimensional parabolic singularly perturbed problems of reaction-diffusion type. The... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| StartPage | 117 |
| SubjectTerms | Boundary layers Finite difference methods Modified graded mesh Parabolic reaction-diffusion problems Singular perturbation problem Uniform convergence |
| Title | A numerical approach for singularly perturbed parabolic reaction-diffusion problem on a modified graded mesh |
| URI | https://doaj.org/article/d937d4fa070f4430a279b97994989e33 |
| Volume | 54 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2501-059X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001723481 issn: 2457-6794 databaseCode: DOA dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27TsMwFLVQxcDCG_GWByQmq0nsJPZYEBVTxQBSt8jOtXmoTau0ReLvuTdJUZlYmBLFiRMdOzr3-nEOYzexcjJYzFRLKzOhJHihtXeihMRb7FGZD63ZRD4a6fHYPG1YfdGasFYeuAWuD8ifoLC6PApKycgmuXE0F6WMNl42Op9RbjaSqWZ0JU9ohyk5y6k0Fxn2ulaxURIh9z8qa5epigXynfzFSBvC_Q3DDPfZbhca8kH7SQdsy1eHbK8LE3n3Ey6O2GTAq1U70TLha01wjsEnp7yflpVOvvjc10gmDh8kcW9H6r8c48NmF4MgV5QVDZPxzk-G46nl0xkW0Lteawt4mPrF2zF7GT483z-KzjRBlJhdSBF7B8ob7TEx1CnIWBIHB0iUiwKo1Lgydj4BpbxNMxuB1CBVGbxNAkRWyhPWq2aVP2U81VislUP8rQoZmBhSsAg_QmvAwhm7XQNXzFttjAJzigbiYg1xQRCfsTvC9ecu0rRuLmBLF11LF3-19Pl_VHLBdhJy8G1W_F2y3rJe-Su2XX4u3xf1ddOJvgEohswQ |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+numerical+approach+for+singularly+perturbed+parabolic+reaction-diffusion+problem+on+a+modified+graded+mesh&rft.jtitle=Journal+of+numerical+analysis+and+approximation+theory&rft.au=Kishun+Kumar+Sah&rft.au=Subramaniam+Gowrisankar&rft.date=2025-06-30&rft.pub=Publishing+House+of+the+Romanian+Academy&rft.issn=2457-6794&rft.eissn=2501-059X&rft.volume=54&rft.issue=1&rft_id=info:doi/10.33993%2Fjnaat541-1513&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d937d4fa070f4430a279b97994989e33 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2457-6794&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2457-6794&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2457-6794&client=summon |