A numerical approach for singularly perturbed parabolic reaction-diffusion problem on a modified graded mesh

This paper addresses the numerical approximations of solutions for one dimensional parabolic singularly perturbed problems of reaction-diffusion type. The solution of this class of problems exhibit boundary layers on both sides of the domain. The proposed numerical method involves combining the back...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of numerical analysis and approximation theory Ročník 54; číslo 1; s. 117 - 139
Hlavní autoři: Sah, Kishun Kumar, Gowrisankar, Subramaniam
Médium: Journal Article
Jazyk:angličtina
Vydáno: Publishing House of the Romanian Academy 30.06.2025
Témata:
ISSN:2457-6794, 2501-059X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper addresses the numerical approximations of solutions for one dimensional parabolic singularly perturbed problems of reaction-diffusion type. The solution of this class of problems exhibit boundary layers on both sides of the domain. The proposed numerical method involves combining the backward Euler method on a uniform mesh for temporal discretization and an upwind finite difference scheme for spatial discretization on a modified graded mesh. The numerical solutions presented here are calculated using a modified graded mesh and the error bounds are rigorously assessed within the discrete maximum norm. The primary focus of this study is to underscore the crucial importance of utilizing a modified graded mesh to enhance the order of convergence in numerical solutions. The method demonstrates uniform convergence, with first-order accuracy in time and nearly second-order accuracy in space concerning the perturbation parameter. Theoretical findings are supported by numerical results presented in the paper.
AbstractList This paper addresses the numerical approximations of solutions for one dimensional parabolic singularly perturbed problems of reaction-diffusion type. The solution of this class of problems exhibit boundary layers on both sides of the domain. The proposed numerical method involves combining the backward Euler method on a uniform mesh for temporal discretization and an upwind finite difference scheme for spatial discretization on a modified graded mesh. The numerical solutions presented here are calculated using a modified graded mesh and the error bounds are rigorously assessed within the discrete maximum norm. The primary focus of this study is to underscore the crucial importance of utilizing a modified graded mesh to enhance the order of convergence in numerical solutions. The method demonstrates uniform convergence, with first-order accuracy in time and nearly second-order accuracy in space concerning the perturbation parameter. Theoretical findings are supported by numerical results presented in the paper.
Author Gowrisankar, Subramaniam
Sah, Kishun Kumar
Author_xml – sequence: 1
  givenname: Kishun Kumar
  orcidid: 0009-0005-2887-664X
  surname: Sah
  fullname: Sah, Kishun Kumar
– sequence: 2
  givenname: Subramaniam
  surname: Gowrisankar
  fullname: Gowrisankar, Subramaniam
BookMark eNo9kMtqwzAQRUVpoWmabdf6Aad6-aFlCH0EAt200J0YS6NEwbaM7Czy93WStqt7mOGexX0gt13skJAnzpZSai2fDx3AmCue8ZzLGzITOeMZy_X37cQqL7Oi1OqeLIbhwBjjpZCq4jPSrGh3bDEFCw2Fvk8R7J76mOgQut2xgdScaI9pPKYaHe0hQR2bYGlCsGOIXeaC98dhIjqV6wZbOiHQNk6PMFV2CdwULQ77R3LnoRlw8Ztz8vX68rl-z7Yfb5v1aptZwUuZcaydQl2hYqLKneRSiaLwTqiaeadyXVteo3BKIeQFMCcrJ5X1CMI7BlLOyebqdREOpk-hhXQyEYK5HGLaGUhjsA0ap2XplAdWMq-UZCBKXetSa6UrjfLsWl5dNsVhSOj_fZyZy_Tmb3pznl7-AFavew0
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.33993/jnaat541-1513
DatabaseName CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2501-059X
EndPage 139
ExternalDocumentID oai_doaj_org_article_d937d4fa070f4430a279b97994989e33
10_33993_jnaat541_1513
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c2173-1ebd4e98e40285d3134266fd24b0fd459bc1be2d44ea56a0d38d34cfea2fd0a33
IEDL.DBID DOA
ISSN 2457-6794
IngestDate Fri Oct 03 12:42:27 EDT 2025
Sat Nov 29 06:48:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2173-1ebd4e98e40285d3134266fd24b0fd459bc1be2d44ea56a0d38d34cfea2fd0a33
ORCID 0009-0005-2887-664X
OpenAccessLink https://doaj.org/article/d937d4fa070f4430a279b97994989e33
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_d937d4fa070f4430a279b97994989e33
crossref_primary_10_33993_jnaat541_1513
PublicationCentury 2000
PublicationDate 2025-06-30
PublicationDateYYYYMMDD 2025-06-30
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-30
  day: 30
PublicationDecade 2020
PublicationTitle Journal of numerical analysis and approximation theory
PublicationYear 2025
Publisher Publishing House of the Romanian Academy
Publisher_xml – name: Publishing House of the Romanian Academy
SSID ssj0001723481
Score 2.2962985
Snippet This paper addresses the numerical approximations of solutions for one dimensional parabolic singularly perturbed problems of reaction-diffusion type. The...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 117
SubjectTerms Boundary layers
Finite difference methods
Modified graded mesh
Parabolic reaction-diffusion problems
Singular perturbation problem
Uniform convergence
Title A numerical approach for singularly perturbed parabolic reaction-diffusion problem on a modified graded mesh
URI https://doaj.org/article/d937d4fa070f4430a279b97994989e33
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2501-059X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001723481
  issn: 2457-6794
  databaseCode: DOA
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxcDCG1Fe8oDEZDWJnYfHgqgYUMUAUrfoHNs81KZVH0j8e-6cFJWJhSWJ4rx0d9F3Z999x9g1uhSAfoMRmfUglIusKKxKhc4qK32EEFuEQuHHfDgsRiP9tNHqi3LCGnrgRnA9i_hplQc0Ta-UjCDJtaG1KKUL7WTg-YxyvRFMhdmVPKEKU-osp9JcZGh1DWOjJEDufdQAy1TFAvFO_kKkDeL-gDCDfbbbuoa833zSAdty9SHba91E3v6EiyM27vN61Sy0jPmaE5yj88kp7qe00vEXn7k5gonBG4nc2xD7L0f_MFQxCOqKsqJpMt72k-F4CHwyxQF61-scLO4mbvF2zF4G9893D6JtmiAqjC6kiJ2xyunCYWBYpFbGkjDY20SZyKMWtKli4xKrlIM0g8jKwkpVeQeJtxFIecI69bR2p4ybNLY-TXLIwKhKS-2syg1UgFscgy67WQuunDXcGCXGFEHE5VrEJYm4y25Jrj9XEad1OIGaLltNl39p-uw_HnLOdhLq4Bsy_i5YZzlfuUu2XX0u3xfzq2BE3yqCy98
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+numerical+approach+for+singularly+perturbed+parabolic+reaction-diffusion+problem+on+a+modified+graded+mesh&rft.jtitle=Journal+of+numerical+analysis+and+approximation+theory&rft.au=Sah%2C+Kishun+Kumar&rft.au=Gowrisankar%2C+Subramaniam&rft.date=2025-06-30&rft.issn=2457-6794&rft.eissn=2501-059X&rft.volume=54&rft.issue=1&rft.spage=117&rft.epage=139&rft_id=info:doi/10.33993%2Fjnaat541-1513&rft.externalDBID=n%2Fa&rft.externalDocID=10_33993_jnaat541_1513
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2457-6794&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2457-6794&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2457-6794&client=summon