A Framework for Multiclass Contour Visualization
Multiclass contour visualization is often used to interpret complex data attributes in such fields as weather forecasting, computational fluid dynamics, and artificial intelligence. However, effective and accurate representations of underlying data patterns and correlations can be challenging in mul...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on visualization and computer graphics Jg. 29; H. 1; S. 1 - 10 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1077-2626, 1941-0506, 1941-0506 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Multiclass contour visualization is often used to interpret complex data attributes in such fields as weather forecasting, computational fluid dynamics, and artificial intelligence. However, effective and accurate representations of underlying data patterns and correlations can be challenging in multiclass contour visualization, primarily due to the inevitable visual cluttering and occlusions when the number of classes is significant. To address this issue, visualization design must carefully choose design parameters to make visualization more comprehensible. With this goal in mind, we proposed a framework for multiclass contour visualization. The framework has two components: a set of four visualization design parameters, which are developed based on an extensive review of literature on contour visualization, and a declarative domain-specific language (DSL) for creating multiclass contour rendering, which enables a fast exploration of those design parameters. A task-oriented user study was conducted to assess how those design parameters affect users' interpretations of real-world data. The study results offered some suggestions on the value choices of design parameters in multiclass contour visualization. |
|---|---|
| AbstractList | Multiclass contour visualization is often used to interpret complex data attributes in such fields as weather forecasting, computational fluid dynamics, and artificial intelligence. However, effective and accurate representations of underlying data patterns and correlations can be challenging in multiclass contour visualization, primarily due to the inevitable visual cluttering and occlusions when the number of classes is significant. To address this issue, visualization design must carefully choose design parameters to make visualization more comprehensible. With this goal in mind, we proposed a framework for multiclass contour visualization. The framework has two components: a set of four visualization design parameters, which are developed based on an extensive review of literature on contour visualization, and a declarative domain-specific language (DSL) for creating multiclass contour rendering, which enables a fast exploration of those design parameters. A task-oriented user study was conducted to assess how those design parameters affect users' interpretations of real-world data. The study results offered some suggestions on the value choices of design parameters in multiclass contour visualization. Multiclass contour visualization is often used to interpret complex data attributes in such fields as weather forecasting, computational fluid dynamics, and artificial intelligence. However, effective and accurate representations of underlying data patterns and correlations can be challenging in multiclass contour visualization, primarily due to the inevitable visual cluttering and occlusions when the number of classes is significant. To address this issue, visualization design must carefully choose design parameters to make visualization more comprehensible. With this goal in mind, we proposed a framework for multiclass contour visualization. The framework has two components: a set of four visualization design parameters, which are developed based on an extensive review of literature on contour visualization, and a declarative domain-specific language (DSL) for creating multiclass contour rendering, which enables a fast exploration of those design parameters. A task-oriented user study was conducted to assess how those design parameters affect users' interpretations of real-world data. The study results offered some suggestions on the value choices of design parameters in multiclass contour visualization.Multiclass contour visualization is often used to interpret complex data attributes in such fields as weather forecasting, computational fluid dynamics, and artificial intelligence. However, effective and accurate representations of underlying data patterns and correlations can be challenging in multiclass contour visualization, primarily due to the inevitable visual cluttering and occlusions when the number of classes is significant. To address this issue, visualization design must carefully choose design parameters to make visualization more comprehensible. With this goal in mind, we proposed a framework for multiclass contour visualization. The framework has two components: a set of four visualization design parameters, which are developed based on an extensive review of literature on contour visualization, and a declarative domain-specific language (DSL) for creating multiclass contour rendering, which enables a fast exploration of those design parameters. A task-oriented user study was conducted to assess how those design parameters affect users' interpretations of real-world data. The study results offered some suggestions on the value choices of design parameters in multiclass contour visualization. |
| Author | Zhang, Xiaolong Yuan, Xiaoru Li, Mingxuan Yu, Jiacheng Li, Sihang Liu, Le |
| Author_xml | – sequence: 1 givenname: Sihang orcidid: 0000-0002-4816-7032 surname: Li fullname: Li, Sihang organization: Key Laboratory of Machine Perception (Ministry of Education), School of AI, Peking University, China – sequence: 2 givenname: Jiacheng surname: Yu fullname: Yu, Jiacheng organization: Key Laboratory of Machine Perception (Ministry of Education), School of AI, Peking University, China – sequence: 3 givenname: Mingxuan surname: Li fullname: Li, Mingxuan organization: Key Laboratory of Machine Perception (Ministry of Education), School of AI, Peking University, China – sequence: 4 givenname: Le surname: Liu fullname: Liu, Le organization: School of Computer Science, Northwestern Polytechnical University, China – sequence: 5 givenname: Xiaolong orcidid: 0000-0003-0601-3905 surname: Zhang fullname: Zhang, Xiaolong organization: College of Information Sciences and Technology, Pennsylvania State University, USA – sequence: 6 givenname: Xiaoru orcidid: 0000-0003-3630-3065 surname: Yuan fullname: Yuan, Xiaoru organization: Key Laboratory of Machine Perception (Ministry of Education), School of AI, Peking University, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36194705$$D View this record in MEDLINE/PubMed |
| BookMark | eNpdkE1PwzAMhiM0xD7gByAkVIkLlw4nadPmOFVsIA1xmXaNssyVOtpmJK0Q_HoybezAyT48tl8_YzJobYuE3FKYUgryabUuFlMGjE05A5nk7IKMqExoDCmIQeghy2ImmBiSsfc7AJokubwiQy4ClkE6IjCL5k43-GXdR1RaF731dVeZWnsfFbbtbO-ideV7XVc_uqtse00uS117vDnVCVnNn1fFS7x8X7wWs2VsGBVdvJUSOEemBdMcZLoFkzNjkOZZbnSZclaGBGUpBIBAnm90mqBBgSKjGQKfkMfj2r2znz36TjWVN1jXukXbe8WycIbnkNGAPvxDdyF1G8IFKk1kmvMQZULuT1S_aXCr9q5qtPtWfyoCQI-AcdZ7h-UZoaAOutVBtzroVifdYebuOFMh4pkPr0spKf8Fhzt4cQ |
| CODEN | ITVGEA |
| Cites_doi | 10.1109/TVCG.2012.238 10.1109/TVCG.2009.175 10.1111/cgf.12391 10.1109/TVCG.2019.2945960 10.1109/GMAG.2003.1219671 10.1080/13658816.2013.868466 10.1109/TVCG.2020.3030432 10.1109/TVCG.2018.2865139 10.1109/TVCG.2013.130 10.1109/TVCG.2009.122 10.1109/TVCG.2019.2934811 10.1109/TVCG.2010.144 10.1109/TVCG.2009.100 10.1109/TVCG.2017.2785807 10.1111/j.2153-3490.1955.tb01170.x 10.1109/TVCG.2013.143 10.1111/cgf.13440 10.1109/TVCG.2016.2599030 10.1109/TVCG.2014.2346322 10.1109/TVCG.2010.210 10.1109/TVCG.2010.154 10.1145/3313831.3376297 10.1109/TVCG.2019.2934667 10.1109/TVCG.2020.3030372 10.1109/TVCG.2013.65 10.1109/TVCG.2018.2864841 10.1137/1.9781611972801.37 10.1111/j.1467-8659.2009.01452.x 10.1109/TVCG.2018.2865141 10.1109/TVCG.2011.127 10.1109/TVCG.2017.2744184 10.1145/2077451.2077462 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TVCG.2022.3209482 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | PubMed Technology Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0506 |
| EndPage | 10 |
| ExternalDocumentID | 36194705 10_1109_TVCG_2022_3209482 9909991 |
| Genre | orig-research Journal Article |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNI RNS RZB TN5 VH1 AAYXX CITATION AAYOK NPM RIG 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c216t-d99033e2a62a3095d0c82cce1878caf532f947ff66006e38ba54ece6e6717e03 |
| IEDL.DBID | RIE |
| ISSN | 1077-2626 1941-0506 |
| IngestDate | Sat Sep 27 21:36:42 EDT 2025 Sun Nov 09 07:22:37 EST 2025 Thu Apr 03 07:12:28 EDT 2025 Sat Nov 29 03:31:42 EST 2025 Wed Aug 27 02:29:14 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c216t-d99033e2a62a3095d0c82cce1878caf532f947ff66006e38ba54ece6e6717e03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-0601-3905 0000-0003-3630-3065 0000-0002-4816-7032 |
| PMID | 36194705 |
| PQID | 2754958303 |
| PQPubID | 75741 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2721638071 ieee_primary_9909991 proquest_journals_2754958303 pubmed_primary_36194705 crossref_primary_10_1109_TVCG_2022_3209482 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on visualization and computer graphics |
| PublicationTitleAbbrev | TVCG |
| PublicationTitleAlternate | IEEE Trans Vis Comput Graph |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref34 ref12 ref37 ref15 ref36 krizhevsky (ref13) 2009 ref14 van der maaten (ref33) 2008; 9 ref31 ref30 ref11 ref32 ref10 ruder (ref25) 2016; abs 1609 4747 malkai (ref19) 2021; abs 2103 2992 ref2 ref17 devlin (ref8) 0 ref38 ref16 ref18 ref24 ref23 ref26 ref20 ref22 ref21 ref28 ref27 ref29 ref7 ref9 ref4 ref3 ref6 ref5 anderson (ref1) 1995; 206 |
| References_xml | – ident: ref38 doi: 10.1109/TVCG.2012.238 – ident: ref34 doi: 10.1109/TVCG.2009.175 – ident: ref27 doi: 10.1111/cgf.12391 – ident: ref37 doi: 10.1109/TVCG.2019.2945960 – start-page: 4171 year: 0 ident: ref8 article-title: BERT: Pre-training of deep bidirectional transformers for language understanding publication-title: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics Human Language Technologies – ident: ref20 doi: 10.1109/GMAG.2003.1219671 – ident: ref29 doi: 10.1080/13658816.2013.868466 – volume: 206 year: 1995 ident: ref1 publication-title: Computational Fluid Dynamics – ident: ref36 doi: 10.1109/TVCG.2020.3030432 – ident: ref4 doi: 10.1109/TVCG.2018.2865139 – ident: ref24 doi: 10.1109/TVCG.2013.130 – ident: ref6 doi: 10.1109/TVCG.2009.122 – ident: ref17 doi: 10.1109/TVCG.2019.2934811 – volume: 9 start-page: 2579 year: 2008 ident: ref33 article-title: Visualizing data using t-SNE publication-title: Journal of Machine Learning Research – ident: ref10 doi: 10.1109/TVCG.2010.144 – ident: ref18 doi: 10.1109/TVCG.2009.100 – ident: ref22 doi: 10.1109/TVCG.2017.2785807 – year: 2009 ident: ref13 publication-title: Learning multiple layers of features from tiny images – ident: ref2 doi: 10.1111/j.2153-3490.1955.tb01170.x – ident: ref35 doi: 10.1109/TVCG.2013.143 – ident: ref11 doi: 10.1111/cgf.13440 – ident: ref28 doi: 10.1109/TVCG.2016.2599030 – ident: ref5 doi: 10.1109/TVCG.2014.2346322 – ident: ref23 doi: 10.1109/TVCG.2010.210 – ident: ref3 doi: 10.1109/TVCG.2010.154 – ident: ref14 doi: 10.1145/3313831.3376297 – volume: abs 2103 2992 year: 2021 ident: ref19 article-title: Clusterplot: High-dimensional cluster visualization publication-title: CoRR – volume: abs 1609 4747 year: 2016 ident: ref25 article-title: An overview of gradient descent optimization algorithms publication-title: CoRR – ident: ref15 doi: 10.1109/TVCG.2019.2934667 – ident: ref32 doi: 10.1109/TVCG.2020.3030372 – ident: ref21 doi: 10.1109/TVCG.2013.65 – ident: ref30 doi: 10.1109/TVCG.2018.2864841 – ident: ref16 doi: 10.1137/1.9781611972801.37 – ident: ref31 doi: 10.1111/j.1467-8659.2009.01452.x – ident: ref12 doi: 10.1109/TVCG.2018.2865141 – ident: ref9 doi: 10.1109/TVCG.2011.127 – ident: ref26 doi: 10.1109/TVCG.2017.2744184 – ident: ref7 doi: 10.1145/2077451.2077462 |
| SSID | ssj0014489 |
| Score | 2.389455 |
| Snippet | Multiclass contour visualization is often used to interpret complex data attributes in such fields as weather forecasting, computational fluid dynamics, and... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Artificial intelligence Computational fluid dynamics Contour Contours Data visualization Design parameters Domain specific languages domain-specific language DSL Filling Image color analysis Literature reviews multiclass visualization Task analysis Visualization visualization design visualization framework Weather forecasting |
| Title | A Framework for Multiclass Contour Visualization |
| URI | https://ieeexplore.ieee.org/document/9909991 https://www.ncbi.nlm.nih.gov/pubmed/36194705 https://www.proquest.com/docview/2754958303 https://www.proquest.com/docview/2721638071 |
| Volume | 29 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0506 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014489 issn: 1077-2626 databaseCode: RIE dateStart: 19950101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6VigEGXuURKFWQmBBpEzvxY6wqClPFUFXdItc9S11a1Ae_n3OSRiDBwBYplh19ueS-z3fnA3iUs8xYnbIoEVpFqWUmmuE8jowhri3JQRnhimYTcjRS06l-b8BzXQuDiEXyGXb9ZRHLn6_szm-V9ejP6fnMARxIKcparTpiQDJDl_mFMmLE0qsIZhLr3ngyeCUlyFiXM1Iziv3wQUVTlb_5ZeFnhqf_e8IzOKn4ZNgvDeAcGri8gONvpwy2IO6Hw30KVkgcNSyKbq2nzaE_nIqmCCeLja-uLGsyL2E8fBkP3qKqUUJkWSK20ZyW5RyZEcxw4kzz2CpmLSZKKmtcxpnTqXROELsRyNXMZClaFChIzGHMr6C5XC3xBkIhUtTSZk4LlzrhjOXE70jj-a7khpsAnvbI5R_lcRh5ISNinXuYcw9zXsEcQMsjVA-swAmgvcc6rz6YTc4kCdVMkUMN4KG-Tabu4xdmiaudH8M8eyRSFMB1-Y7qubnfjZFxdvv7mndw5PvEl3snbWhu1zu8h0P7uV1s1h2yp6nqFPb0BUIxxR0 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2VRQIObGUJa5A4IdKmdmLHR4QoRZSKQ1X1FrnOWOqlRV34fsZJGoEEB26RYtnRi5N5b8YzA3ArR7E2KmJBS6gkiAzTwQizMNCauLYkA6WFzZtNyF4vGQ7Vew3uq1wYRMwPn2HDXeax_Gxqls5V1qQ_p-Mza7ARRxELi2ytKmZAQkMVJwxlwIinlzHMVqia_cHjM2lBxhqckZ5J2A8rlLdV-Zth5pamvfe_Z9yH3ZJR-g_FFjiAGk4OYedbncE6hA9-e3UIyyeW6udpt8YRZ9-Vp6Ip_MF47vIri6zMI-i3n_qPnaBslRAY1hKLIKNlOUemBdOcWFMWmoQZg61EJkbbmDOrImmtIH4jkCcjHUdoUKAgOYchP4b1yXSCp-ALEaGSJrZK2MgKqw0nhkcqz_Ul11x7cLdCLv0oCmKkuZAIVepgTh3MaQmzB3WHUDWwBMeDixXWafnJzFMmSarGCZlUD26q27TZXQRDT3C6dGOY449Eizw4Kd5RNTd3_hgZxme_r3kNW53-WzftvvRez2HbdY0vPCkXsL6YLfESNs3nYjyfXeW76gsJesd8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Framework+for+Multiclass+Contour+Visualization&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Li%2C+Sihang&rft.au=Yu%2C+Jiacheng&rft.au=Li%2C+Mingxuan&rft.au=Liu%2C+Le&rft.date=2023-01-01&rft.issn=1077-2626&rft.eissn=1941-0506&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FTVCG.2022.3209482&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TVCG_2022_3209482 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon |