Explicit high-order structure-preserving algorithms for the two-dimensional fractional nonlinear Schrödinger equation

The paper aims to construct a class of high-order explicit conservative schemes for the space fractional nonlinear Schrödinger equation by combing the invariant energy quadratization method and Runge-Kutta method. We first derive the Hamiltonian formulation of the equation, and obtain a new equivale...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of computer mathematics Ročník 99; číslo 5; s. 877 - 894
Hlavní autori: Fu, Yayun, Shi, Yanhua, Zhao, Yanmin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Abingdon Taylor & Francis 04.05.2022
Taylor & Francis Ltd
Predmet:
ISSN:0020-7160, 1029-0265
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The paper aims to construct a class of high-order explicit conservative schemes for the space fractional nonlinear Schrödinger equation by combing the invariant energy quadratization method and Runge-Kutta method. We first derive the Hamiltonian formulation of the equation, and obtain a new equivalent system via introducing a scalar variable. Then, we propose a semi-discrete conservative system by using the Fourier pseudo-spectral method to approximate the equivalent system in space. Further applying the fourth-order modified Runge-Kutta method to the semi-discrete system gives two classes of schemes for the equation. One scheme preserves the energy while the other scheme conserves the mass. Numerical experiments are provided to demonstrate the conservative properties, convergence orders and long time stability of the proposed schemes.
AbstractList The paper aims to construct a class of high-order explicit conservative schemes for the space fractional nonlinear Schrödinger equation by combing the invariant energy quadratization method and Runge-Kutta method. We first derive the Hamiltonian formulation of the equation, and obtain a new equivalent system via introducing a scalar variable. Then, we propose a semi-discrete conservative system by using the Fourier pseudo-spectral method to approximate the equivalent system in space. Further applying the fourth-order modified Runge-Kutta method to the semi-discrete system gives two classes of schemes for the equation. One scheme preserves the energy while the other scheme conserves the mass. Numerical experiments are provided to demonstrate the conservative properties, convergence orders and long time stability of the proposed schemes.
Author Shi, Yanhua
Zhao, Yanmin
Fu, Yayun
Author_xml – sequence: 1
  givenname: Yayun
  surname: Fu
  fullname: Fu, Yayun
  organization: School of Science, Xuchang University
– sequence: 2
  givenname: Yanhua
  surname: Shi
  fullname: Shi, Yanhua
  organization: School of Science, Xuchang University
– sequence: 3
  givenname: Yanmin
  surname: Zhao
  fullname: Zhao, Yanmin
  email: zhaoym@lsec.cc.ac.cn
  organization: School of Science, Xuchang University
BookMark eNp9kM1KxDAUhYMoOI4-glBw3fEmadN2pwz-geBCXYc0SacZOs14k476Yr6AL2bL6NbVvYvvHA7fCTnsfW8JOaewoFDCJQCDggpYMGB0QasMqqI8IDMKrEqBifyQzCYmnaBjchLCGgDKqhAzsrv52HZOu5i0btWmHo3FJEQcdBzQplu0weLO9atEdSuPLrabkDQek9jaJL771LiN7YPzveqSBpWO-3ec2LneKkyedYvfX2asGJvt26Am4pQcNaoL9uz3zsnr7c3L8j59fLp7WF4_pppREdMMCpGbWnBb0RpKXTaKG861Ap5rkzdCl1VdG1twwYXJWKFZDiAyauqiUlzxObnY927Rvw02RLn2A44Dg2QiKzmnIstGKt9TGn0IaBu5RbdR-CkpyEmx_FMsJ8XyV_GYu9rnXD8q2ah3j52RUX12HkcXvXZB8v8rfgD8i4fz
Cites_doi 10.1016/j.jcp.2020.109576
10.1364/OL.40.001117
10.1016/j.apnum.2018.03.008
10.1016/j.jcp.2019.108975
10.1137/04061979X
10.1103/PhysRevLett.115.180403
10.1016/j.cpc.2013.07.012
10.1016/j.aml.2019.106123
10.1016/j.jcp.2020.109598
10.1063/1.2235026
10.1137/17M1111759
10.1016/j.jcp.2018.05.009
10.1016/j.aml.2019.01.041
10.1016/j.camwa.2018.03.026
10.1007/s00220-012-1621-x
10.1016/j.apnum.2019.08.002
10.1007/s10915-019-01001-5
10.1016/j.cnsns.2021.105786
10.1016/j.cnsns.2016.04.026
10.1137/140961560
10.1016/j.matcom.2019.05.001
10.1002/nme.5372
10.1016/j.jcp.2019.05.048
10.1080/03605302.2010.503769
10.1016/j.jcp.2017.12.044
10.1016/j.jcp.2016.09.029
10.1016/j.amc.2008.07.003
10.1016/j.jcp.2016.12.025
10.1016/j.aml.2019.106158
10.1016/S0375-9601(00)00201-2
10.1016/j.camwa.2015.12.042
10.1016/j.jcp.2014.03.037
10.1142/S0219199715500339
10.1016/j.cnsns.2020.105432
10.1016/j.amc.2019.01.040
10.1016/S0377-0427(01)00398-3
10.1016/j.jcp.2014.04.047
ContentType Journal Article
Copyright 2021 Informa UK Limited, trading as Taylor & Francis Group 2021
2021 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2021 Informa UK Limited, trading as Taylor & Francis Group 2021
– notice: 2021 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/00207160.2021.1940978
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1029-0265
EndPage 894
ExternalDocumentID 10_1080_00207160_2021_1940978
1940978
Genre Review
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABUFD
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACNCT
ACTIO
ACUHS
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AI.
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EDO
EMK
EPL
EST
ESX
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
MK~
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TUS
TWF
UPT
UT5
UU3
VH1
WH7
ZGOLN
~S~
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c216t-40765db63e91b08c8fa3d33ca035cd5f6c89bbde73636d427c2500641db79a3a3
IEDL.DBID TFW
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000668486900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-7160
IngestDate Wed Aug 13 04:28:23 EDT 2025
Sat Nov 29 02:21:40 EST 2025
Mon Oct 20 23:48:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c216t-40765db63e91b08c8fa3d33ca035cd5f6c89bbde73636d427c2500641db79a3a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2648331644
PQPubID 52924
PageCount 18
ParticipantIDs informaworld_taylorfrancis_310_1080_00207160_2021_1940978
crossref_primary_10_1080_00207160_2021_1940978
proquest_journals_2648331644
PublicationCentury 2000
PublicationDate 2022-05-04
PublicationDateYYYYMMDD 2022-05-04
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-04
  day: 04
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International journal of computer mathematics
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Constantin P. (CIT0007) 2009; 26
Macías-Díaz J. (CIT0027) 2018; 59
CIT0030
Zhao J. (CIT0041) 2019; 351
CIT0010
CIT0032
CIT0031
CIT0012
CIT0034
CIT0011
CIT0033
Laskin N. (CIT0024) 2002; 66
CIT0014
CIT0036
CIT0013
CIT0035
CIT0016
CIT0038
CIT0015
CIT0037
CIT0018
CIT0039
CIT0019
CIT0040
CIT0021
CIT0020
CIT0001
CIT0023
CIT0022
CIT0003
CIT0025
CIT0002
CIT0005
CIT0004
CIT0026
CIT0029
CIT0006
CIT0028
CIT0009
Hairer E. (CIT0017) 2006
CIT0008
References_xml – ident: CIT0013
  doi: 10.1016/j.jcp.2020.109576
– ident: CIT0026
  doi: 10.1364/OL.40.001117
– ident: CIT0031
  doi: 10.1016/j.apnum.2018.03.008
– volume: 26
  start-page: 159
  year: 2009
  ident: CIT0007
  publication-title: Commun. Partial Differ. Equ.
– ident: CIT0002
  doi: 10.1016/j.jcp.2019.108975
– ident: CIT0006
  doi: 10.1137/04061979X
– ident: CIT0037
  doi: 10.1103/PhysRevLett.115.180403
– ident: CIT0001
  doi: 10.1016/j.cpc.2013.07.012
– ident: CIT0011
  doi: 10.1016/j.aml.2019.106123
– ident: CIT0038
  doi: 10.1016/j.jcp.2020.109598
– ident: CIT0015
  doi: 10.1063/1.2235026
– ident: CIT0012
  doi: 10.1137/17M1111759
– ident: CIT0004
  doi: 10.1016/j.jcp.2018.05.009
– ident: CIT0036
  doi: 10.1016/j.aml.2019.01.041
– ident: CIT0020
  doi: 10.1016/j.camwa.2018.03.026
– ident: CIT0022
  doi: 10.1007/s00220-012-1621-x
– ident: CIT0033
  doi: 10.1016/j.apnum.2019.08.002
– ident: CIT0021
  doi: 10.1007/s10915-019-01001-5
– ident: CIT0019
  doi: 10.1016/j.cnsns.2021.105786
– ident: CIT0028
  doi: 10.1016/j.cnsns.2016.04.026
– ident: CIT0039
  doi: 10.1137/140961560
– ident: CIT0010
  doi: 10.1016/j.matcom.2019.05.001
– volume: 59
  start-page: 67
  year: 2018
  ident: CIT0027
  publication-title: Comput. Math. Appl.
– ident: CIT0040
  doi: 10.1002/nme.5372
– ident: CIT0005
  doi: 10.1016/j.jcp.2019.05.048
– ident: CIT0014
  doi: 10.1080/03605302.2010.503769
– ident: CIT0025
  doi: 10.1016/j.jcp.2017.12.044
– ident: CIT0034
  doi: 10.1016/j.jcp.2016.09.029
– ident: CIT0016
  doi: 10.1016/j.amc.2008.07.003
– volume-title: Geometric Numerical Integration: Structure-preserving Algorithms for Ordinary Differential Equations
  year: 2006
  ident: CIT0017
– ident: CIT0035
  doi: 10.1016/j.jcp.2016.12.025
– ident: CIT0003
  doi: 10.1016/j.aml.2019.106158
– ident: CIT0023
  doi: 10.1016/S0375-9601(00)00201-2
– volume: 66
  start-page: 249
  year: 2002
  ident: CIT0024
  publication-title: Phys. Rev.
– ident: CIT0009
  doi: 10.1016/j.camwa.2015.12.042
– ident: CIT0030
  doi: 10.1016/j.jcp.2014.03.037
– ident: CIT0029
  doi: 10.1142/S0219199715500339
– ident: CIT0018
  doi: 10.1016/j.cnsns.2020.105432
– volume: 351
  start-page: 124
  year: 2019
  ident: CIT0041
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2019.01.040
– ident: CIT0008
  doi: 10.1016/S0377-0427(01)00398-3
– ident: CIT0032
  doi: 10.1016/j.jcp.2014.04.047
SSID ssj0008976
Score 2.270744
Snippet The paper aims to construct a class of high-order explicit conservative schemes for the space fractional nonlinear Schrödinger equation by combing the...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 877
SubjectTerms Algorithms
Approximation
Discrete systems
Equivalence
explicit conservative schemes
Fractional nonlinear Schrödinger equation
invariant energy quadratization
Runge-Kutta method
Schrodinger equation
Spectral methods
structure-preserving algorithms
Title Explicit high-order structure-preserving algorithms for the two-dimensional fractional nonlinear Schrödinger equation
URI https://www.tandfonline.com/doi/abs/10.1080/00207160.2021.1940978
https://www.proquest.com/docview/2648331644
Volume 99
WOSCitedRecordID wos000668486900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1029-0265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008976
  issn: 0020-7160
  databaseCode: TFW
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29TsMwELYQYmCh_IpCQR5YXTWxa8cjQlQMqGIooltkO0lbCVpIQnkzXoAX4y5OKiqEGGDLEP_kzj7fOd99R8iFFUaYTIYssFoz4bKARdopBotFWBX1U8mrROFbNRxG47G-q9GERQ2rxBg680QRla3GzW1s0SDiMIMbDkbZg-guDLoQhWMuAlhh8OwR1DcaPKxscaSr8nLYgmGTJofnp17WTqc17tJvtro6gAatf5j6LtmpvU966ZfLHtlI5_uk1VR2oPVGPyBLhObN3KykSGfMKn5O6qlmX_OUIXgWbcx8Qs3jZJHPyulTQeErKLiTtHxbsASLBnjCD5rlPnkCHud-0gaHmuYf70l1qUjTF084fkjuB9ejqxtWV2hgLgxkCcGnkv3Egj51YHuRizLDE86d6fG-S_qZdJG2NkkVl1wmIlQOPC5wgoLEKm244UdkE0ZOjwl1SllnA3g7UkILaW3I8ZevyMBD1cq2SbfRTPzsiTjiYMVv6qUao1TjWqptor_qLy6rG5DMlyuJ-S9tO42y43pPFzFiATmH8FKc_KHrU7IdYgYFYiZFh2yC6tIzsuWW5azIz6vV-wnQoe60
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29TsMwELagIMFC-RWFAh5YXTWxa8cjQlRFlE5FdLNiJ2krQQtpKG_GC_Bi-OKkaoUQA2wZ4p_47PPd5b7vELrULGRhwn3iaSkJM4lHAmkEsZuFaRG0Yk5zoHBX9HrBYCCXsTCQVgk-dOKIInJdDYcbgtFlShxAuO3NyJvWvfO9hnXDAYywjjagOh04YP3240IbBzIvMAdNCLQpUTw_dbNyP62wl37T1vkV1K7-x-R30U5hgOIrt2P20Fo82UfVsrgDLs76AZpDdt7YjDMMjMYkp-jEjm32LY0J5M-CmpkMcfg0nKbjbPQ8w_YzsLUocfY-JRHUDXCcHzhJHX7CPk7crEMYapR-fkR5XBHHr45z_BA9tG_61x1SFGkgxvd4Zv1PwVuRtiKVnm4GJkhCGlFqwiZtmaiVcBNIraNYUE55xHxhrNFl7SAv0kKGNKRHqGJHjo8RNkJooz37diCYZFxrn8JfX5ZYI1UKXUONUjTqxXFxKG9BcepWVcGqqmJVa0guC1BleRAkcRVLFP2lbb2UtiqO9UxBOiCl1sNkJ3_o-gJtdfr3XdW97d2dom0fABWQQsnqqGLFGJ-hTTPPxrP0PN_KX9d-8tc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagIMTCG1GeHliNmtiN4xEBFQhUMYBgs2I7hkrQQhrgn_EH-GPcxQkCIcQAW4b4kXv5zrn7jpBdIzKR-SRmkVGKCesjliorGQiLMDLt5gmvCoXPZL-fXl-r8zqbcFynVWIM7QNQRGWrUbkfnG8y4rCCGw7GpAPRXRztQRSOtQiTZApc5y4K9kXv6sMYp6rqL4dDGI5pinh-mubL8fQFvPSbsa5OoN78P-x9gczV7ifdD_KySCby4RKZb1o70FrTl8kz5uYN7KCkiGfMKoBOGrBmn4qcYfYsGpnhDc3ubkbFoLy9H1P4Cgr-JC1fRsxh14CA-EF9Eaon4HEYNp3hUrfF26urbhVp_hgQx1fIZe_o4uCY1S0amI2jpIToE2juDDBURaaT2tRn3HFusw7vWtf1iU2VMS6XPOGJE7G04HKBFxQ5I1XGM75KWrByvkaoldJYE8HbqRRKJMbEHP_5Cg8uqpKmTfYazuiHgMShow-A00BVjVTVNVXbRH3mny6rKxAf-pVo_svYzYbZulbqscZkQM4hvhTrf5h6h8ycH_b02Un_dIPMxlhNgfmTYpO0gIv5Fpm2z-VgXGxXgvwOCpbxiQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explicit+high-order+structure-preserving+algorithms+for+the+two-dimensional+fractional+nonlinear+Schr%C3%B6dinger+equation&rft.jtitle=International+journal+of+computer+mathematics&rft.au=Fu%2C+Yayun&rft.au=Shi%2C+Yanhua&rft.au=Zhao%2C+Yanmin&rft.date=2022-05-04&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0020-7160&rft.eissn=1029-0265&rft.volume=99&rft.issue=5&rft.spage=877&rft.epage=894&rft_id=info:doi/10.1080%2F00207160.2021.1940978&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7160&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7160&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7160&client=summon