Explicit high-order structure-preserving algorithms for the two-dimensional fractional nonlinear Schrödinger equation

The paper aims to construct a class of high-order explicit conservative schemes for the space fractional nonlinear Schrödinger equation by combing the invariant energy quadratization method and Runge-Kutta method. We first derive the Hamiltonian formulation of the equation, and obtain a new equivale...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of computer mathematics Ročník 99; číslo 5; s. 877 - 894
Hlavní autoři: Fu, Yayun, Shi, Yanhua, Zhao, Yanmin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis 04.05.2022
Taylor & Francis Ltd
Témata:
ISSN:0020-7160, 1029-0265
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The paper aims to construct a class of high-order explicit conservative schemes for the space fractional nonlinear Schrödinger equation by combing the invariant energy quadratization method and Runge-Kutta method. We first derive the Hamiltonian formulation of the equation, and obtain a new equivalent system via introducing a scalar variable. Then, we propose a semi-discrete conservative system by using the Fourier pseudo-spectral method to approximate the equivalent system in space. Further applying the fourth-order modified Runge-Kutta method to the semi-discrete system gives two classes of schemes for the equation. One scheme preserves the energy while the other scheme conserves the mass. Numerical experiments are provided to demonstrate the conservative properties, convergence orders and long time stability of the proposed schemes.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0020-7160
1029-0265
DOI:10.1080/00207160.2021.1940978