Data-driven process characterization and adaptive control in robotic arc welding
Robotic arc welding (RAW) has been an essential process in various assembly systems, such as automotive manufacturing. However, its implementations lack adaptivity to compensate for process variations. This paper presents a data-driven process characterization and online adaptive control framework f...
Uloženo v:
| Vydáno v: | CIRP annals Ročník 71; číslo 1; s. 45 - 48 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
2022
|
| Témata: | |
| ISSN: | 0007-8506 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Robotic arc welding (RAW) has been an essential process in various assembly systems, such as automotive manufacturing. However, its implementations lack adaptivity to compensate for process variations. This paper presents a data-driven process characterization and online adaptive control framework for RAW to automatically and efficiently achieve desired weld pool condition, given any initial conditions. Based on optical imaging, pool width is characterized through a pixel-level image segmentation network and then used for determining the parameter adjustment for robotic execution through a gradient-based controller. Experiments demonstrate quick process convergence within 7 adjustment periods and an error band within 10.9%. |
|---|---|
| AbstractList | Robotic arc welding (RAW) has been an essential process in various assembly systems, such as automotive manufacturing. However, its implementations lack adaptivity to compensate for process variations. This paper presents a data-driven process characterization and online adaptive control framework for RAW to automatically and efficiently achieve desired weld pool condition, given any initial conditions. Based on optical imaging, pool width is characterized through a pixel-level image segmentation network and then used for determining the parameter adjustment for robotic execution through a gradient-based controller. Experiments demonstrate quick process convergence within 7 adjustment periods and an error band within 10.9%. |
| Author | Zhang, Jianjing Kershaw, Joseph Wang, Peng Zhang, Yuming Gao, Robert X. Russell, Matthew |
| Author_xml | – sequence: 1 givenname: Peng orcidid: 0000-0003-3098-009X surname: Wang fullname: Wang, Peng email: Edward.Wang@uky.edu organization: Department of Electrical and Computer Engineering University of Kentucky, Lexington, KY, United States of America – sequence: 2 givenname: Joseph orcidid: 0000-0001-8324-8658 surname: Kershaw fullname: Kershaw, Joseph organization: Department of Mechanical Engineering, University of Kentucky, Lexington, KY, United States of America – sequence: 3 givenname: Matthew surname: Russell fullname: Russell, Matthew organization: Department of Electrical and Computer Engineering University of Kentucky, Lexington, KY, United States of America – sequence: 4 givenname: Jianjing orcidid: 0000-0002-5760-6893 surname: Zhang fullname: Zhang, Jianjing organization: Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, United States of America – sequence: 5 givenname: Yuming surname: Zhang fullname: Zhang, Yuming organization: Department of Electrical and Computer Engineering University of Kentucky, Lexington, KY, United States of America – sequence: 6 givenname: Robert X. orcidid: 0000-0003-3595-3728 surname: Gao fullname: Gao, Robert X. organization: Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, United States of America |
| BookMark | eNp9kM1KAzEUhbOoYFt9AVd5gRmTTDOTghupv1DQha7DnZuMpozJkISKPr0z1pWLwoGzud-F8y3IzAdvCbngrOSM15e7El0cSsGEKNlqTD0jc8ZYUyjJ6lOySGnHmJSsEXPyfAMZChPd3no6xIA2JYrvEAGzje4bsguegjcUDAx5PKMYfI6hp87TGNqQHVKISD9tb5x_OyMnHfTJnv_1krze3b5sHort0_3j5npboOAyFxKRGdV0qmWGdwp42_C2QiuVUaAApRLr2poOANcNqraaeqxOWiOrTlRLIg5_MYaUou30EN0HxC_NmZ486J2ePOjJg2arMfUIqX8Quvw7MUdw_XH06oDacdTe2agTOuvRGhctZm2CO4b_AHp1gAs |
| CitedBy_id | crossref_primary_10_1109_TIM_2025_3563002 crossref_primary_10_3390_jmmp6060135 crossref_primary_10_1007_s40194_025_02020_7 crossref_primary_10_1016_j_rcim_2025_102992 crossref_primary_10_1126_sciadv_adw7071 crossref_primary_10_1016_j_jmapro_2023_11_025 crossref_primary_10_1016_j_jmapro_2024_07_142 crossref_primary_10_1038_s41467_025_60164_y crossref_primary_10_1016_j_oceaneng_2024_119294 |
| Cites_doi | 10.1109/ACCESS.2020.2998052 10.1016/j.jmapro.2020.04.044 10.1016/S0007-8506(07)62060-5 10.1016/j.matdes.2008.04.052 10.1016/j.cirp.2015.04.119 10.1016/j.cirp.2008.03.120 10.1016/j.cirp.2020.04.110 10.1016/j.cirp.2016.04.024 10.1016/j.jmapro.2018.10.042 10.1016/j.jmapro.2021.09.023 10.1016/j.cirp.2019.04.095 |
| ContentType | Journal Article |
| Copyright | 2022 CIRP |
| Copyright_xml | – notice: 2022 CIRP |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cirp.2022.04.046 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EndPage | 48 |
| ExternalDocumentID | 10_1016_j_cirp_2022_04_046 S0007850622000920 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABDEX ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD ADTZH AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SDF SDG SES SET SPC SSM SST SSZ T5K WUQ ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c215t-5cc0d87f8b0d1f8a1b71b3ce58d8a8ac58296edfaac97c8b3ac978b3f5ed53f23 |
| ISSN | 0007-8506 |
| IngestDate | Tue Nov 18 21:09:38 EST 2025 Sat Nov 29 07:30:15 EST 2025 Fri Feb 23 02:38:26 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Welding Robot Adaptive control |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c215t-5cc0d87f8b0d1f8a1b71b3ce58d8a8ac58296edfaac97c8b3ac978b3f5ed53f23 |
| ORCID | 0000-0003-3098-009X 0000-0003-3595-3728 0000-0002-5760-6893 0000-0001-8324-8658 |
| PageCount | 4 |
| ParticipantIDs | crossref_primary_10_1016_j_cirp_2022_04_046 crossref_citationtrail_10_1016_j_cirp_2022_04_046 elsevier_sciencedirect_doi_10_1016_j_cirp_2022_04_046 |
| PublicationCentury | 2000 |
| PublicationDate | 2022 2022-00-00 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | CIRP annals |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Kershaw, Y, Zhang, Wang (bib0007) 2021; 71 Deng (bib0010) 2009; 30 Krueger, Lehr, Schlueter, Bischoff (bib0012) 2019; 68 Zhang, Li, Gui, Li (bib0006) 2018; 36 Lanzett, Santochi, Tantussi (bib0004) 2001; 50 Masinelli, Le-Quang, Zanoli, Wasmer, Shevchik (bib0008) 2020; 8 Ceglarek, Colledan, Váncza, Kim, Marine, Kogel-Hollacher, Mistry, Bolognese (bib0003) 2015; 64 Reinhart, Munzert, Vogl (bib0001) 2008; 57 Ozcelik, Moore (bib0011) 2003 Ruder (bib0013) 2016 Erdős, Kovács, Váncza (bib0002) 2016; 65 Wang, Jiao, Wang, Zhang (bib0009) 2021; 63 Franciosa, Sokolov, Sinha, Sun, Ceglarek (bib0005) 2020; 69 Erdős (10.1016/j.cirp.2022.04.046_bib0002) 2016; 65 Kershaw (10.1016/j.cirp.2022.04.046_bib0007) 2021; 71 Deng (10.1016/j.cirp.2022.04.046_bib0010) 2009; 30 Wang (10.1016/j.cirp.2022.04.046_bib0009) 2021; 63 Ruder (10.1016/j.cirp.2022.04.046_bib0013) 2016 Ozcelik (10.1016/j.cirp.2022.04.046_bib0011) 2003 Krueger (10.1016/j.cirp.2022.04.046_bib0012) 2019; 68 Lanzett (10.1016/j.cirp.2022.04.046_bib0004) 2001; 50 Masinelli (10.1016/j.cirp.2022.04.046_bib0008) 2020; 8 Reinhart (10.1016/j.cirp.2022.04.046_bib0001) 2008; 57 Zhang (10.1016/j.cirp.2022.04.046_bib0006) 2018; 36 Franciosa (10.1016/j.cirp.2022.04.046_bib0005) 2020; 69 Ceglarek (10.1016/j.cirp.2022.04.046_bib0003) 2015; 64 |
| References_xml | – year: 2016 ident: bib0013 article-title: An Overview of Gradient Descent Optimization Algorithms – volume: 68 start-page: 9 year: 2019 end-page: 12 ident: bib0012 article-title: Deep learning for part identification based on inherent features publication-title: CIRP Annals – volume: 50 start-page: 13 year: 2001 end-page: 16 ident: bib0004 article-title: On-line control of robotized Gas Metal Arc Welding publication-title: CIRP Annals – volume: 65 start-page: 451 year: 2016 end-page: 454 ident: bib0002 article-title: Optimized joint motion planning for redundant industrial robots publication-title: CIRP Annals – volume: 69 start-page: 369 year: 2020 end-page: 372 ident: bib0005 article-title: Deep learning enhanced digital twin for closed-loop in-process quality improvement publication-title: CIRP Annals – volume: 30 start-page: 359 year: 2009 end-page: 366 ident: bib0010 article-title: FEM prediction of welding residual stress & distortion in carbon steel considering phase transformation effects publication-title: Mater. Des. – volume: 71 start-page: 374 year: 2021 end-page: 383 ident: bib0007 article-title: Hybrid machine learning-enabled adaptive welding speed control publication-title: J. Manuf. Proc. – volume: 36 start-page: 434 year: 2018 end-page: 441 ident: bib0006 article-title: Adaptive control for laser welding with filler wire of marine high strength steel with tight butt joints for large structures publication-title: J. Manuf. Proc. – volume: 57 start-page: 37 year: 2008 end-page: 40 ident: bib0001 article-title: A programming system for robot-based remote-laser-welding with conventional optics publication-title: CIRP Annals – volume: 64 start-page: 389 year: 2015 end-page: 394 ident: bib0003 article-title: Rapid deployment of remote laser welding processes in automotive assembly systems publication-title: CIRP Annals – volume: 8 start-page: 103803 year: 2020 end-page: 103814 ident: bib0008 article-title: Adaptive laser welding control: a reinforcement learning approach publication-title: IEEE Access – volume: 63 start-page: 2 year: 2021 end-page: 13 ident: bib0009 article-title: A tutorial on deep learning-based data analytics in manufacturing through a welding case study publication-title: J. Manuf. Proc. – year: 2003 ident: bib0011 article-title: Modeling, Sensing and Control of Gas Metal Arc Welding – volume: 8 start-page: 103803 year: 2020 ident: 10.1016/j.cirp.2022.04.046_bib0008 article-title: Adaptive laser welding control: a reinforcement learning approach publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2998052 – volume: 63 start-page: 2 year: 2021 ident: 10.1016/j.cirp.2022.04.046_bib0009 article-title: A tutorial on deep learning-based data analytics in manufacturing through a welding case study publication-title: J. Manuf. Proc. doi: 10.1016/j.jmapro.2020.04.044 – volume: 50 start-page: 13 issue: 1 year: 2001 ident: 10.1016/j.cirp.2022.04.046_bib0004 article-title: On-line control of robotized Gas Metal Arc Welding publication-title: CIRP Annals doi: 10.1016/S0007-8506(07)62060-5 – year: 2003 ident: 10.1016/j.cirp.2022.04.046_bib0011 – volume: 30 start-page: 359 year: 2009 ident: 10.1016/j.cirp.2022.04.046_bib0010 article-title: FEM prediction of welding residual stress & distortion in carbon steel considering phase transformation effects publication-title: Mater. Des. doi: 10.1016/j.matdes.2008.04.052 – volume: 64 start-page: 389 issue: 1 year: 2015 ident: 10.1016/j.cirp.2022.04.046_bib0003 article-title: Rapid deployment of remote laser welding processes in automotive assembly systems publication-title: CIRP Annals doi: 10.1016/j.cirp.2015.04.119 – year: 2016 ident: 10.1016/j.cirp.2022.04.046_bib0013 – volume: 57 start-page: 37 issue: 1 year: 2008 ident: 10.1016/j.cirp.2022.04.046_bib0001 article-title: A programming system for robot-based remote-laser-welding with conventional optics publication-title: CIRP Annals doi: 10.1016/j.cirp.2008.03.120 – volume: 69 start-page: 369 issue: 1 year: 2020 ident: 10.1016/j.cirp.2022.04.046_bib0005 article-title: Deep learning enhanced digital twin for closed-loop in-process quality improvement publication-title: CIRP Annals doi: 10.1016/j.cirp.2020.04.110 – volume: 65 start-page: 451 issue: 1 year: 2016 ident: 10.1016/j.cirp.2022.04.046_bib0002 article-title: Optimized joint motion planning for redundant industrial robots publication-title: CIRP Annals doi: 10.1016/j.cirp.2016.04.024 – volume: 36 start-page: 434 year: 2018 ident: 10.1016/j.cirp.2022.04.046_bib0006 article-title: Adaptive control for laser welding with filler wire of marine high strength steel with tight butt joints for large structures publication-title: J. Manuf. Proc. doi: 10.1016/j.jmapro.2018.10.042 – volume: 71 start-page: 374 year: 2021 ident: 10.1016/j.cirp.2022.04.046_bib0007 article-title: Hybrid machine learning-enabled adaptive welding speed control publication-title: J. Manuf. Proc. doi: 10.1016/j.jmapro.2021.09.023 – volume: 68 start-page: 9 issue: 1 year: 2019 ident: 10.1016/j.cirp.2022.04.046_bib0012 article-title: Deep learning for part identification based on inherent features publication-title: CIRP Annals doi: 10.1016/j.cirp.2019.04.095 |
| SSID | ssj0055072 |
| Score | 2.4326646 |
| Snippet | Robotic arc welding (RAW) has been an essential process in various assembly systems, such as automotive manufacturing. However, its implementations lack... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 45 |
| SubjectTerms | Adaptive control Robot Welding |
| Title | Data-driven process characterization and adaptive control in robotic arc welding |
| URI | https://dx.doi.org/10.1016/j.cirp.2022.04.046 |
| Volume | 71 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0007-8506 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0055072 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEBZptof2UPqk2xc69BZcHHllScel3dLdwxLaLeRmJFmiCcEJTvbx8zuyRombLUtbKBg7NpYVNB8znx7ziZD3THProd-VcSDzGYQAkalCF5njuS1K4BPcm26zCXF-LqdTNRkMfMqFuVqIppE3N2r1X00Nz8DYIXX2L8y9_Sg8gN9gdDiD2eH8R4b_pDc6q9vgxUarmAYQ0ntRljlmXUaJ1lqvuoVDabl6SG1ZmmUn4dra0bVbbANb0jI4_TqBskFzeTcSH73FxOGrnfdu1z_0dW-GIU3rXK7XONGBG43fGrg-A7zOU7U4HMF23dZthsxuOVL0uBAFeV72PW7cdOUXZEX3GZUlMRBHBc5bLj6ONsw_2FmnN8pYJ1V7tKen3UXobx0DgspZSEhSLL9HDpjgSg7JwfHpyfQsxewg6hZ15fHfYnpVXAm4X9PvKUyPllw8Jo-wP0GPIw6ekIFrnpKHPZXJZ2TSQwRFRNB9RFBABE2IoIgIOmsoIoICIigi4jn5_vnk4uOXDDfSyCwwuk3Grc1rKbw0eT32Uo-NGJvCOi5rqaW2XDJVutprbZWw0hThChfPXc0Lz4oXZNgsG_eSUM0ZkFpmvBclcD9lnCpsLrQFHuiYNodknNqmsqgyHzY7WVRpOeG8Cu1Zhfas8iM4ykMy2pZZRY2VO9_mqckrZImR_VWAkDvKvfrHcq_Jg3AXh93ekOGmvXRvyX17tZmt23cIpJ82GI-5 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+process+characterization+and+adaptive+control+in+robotic+arc+welding&rft.jtitle=CIRP+annals&rft.au=Wang%2C+Peng&rft.au=Kershaw%2C+Joseph&rft.au=Russell%2C+Matthew&rft.au=Zhang%2C+Jianjing&rft.date=2022&rft.pub=Elsevier+Ltd&rft.issn=0007-8506&rft.volume=71&rft.issue=1&rft.spage=45&rft.epage=48&rft_id=info:doi/10.1016%2Fj.cirp.2022.04.046&rft.externalDocID=S0007850622000920 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-8506&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-8506&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-8506&client=summon |