The inverse k-max combinatorial optimization problem

Classical combinatorial optimization concerns finding a feasible subset of a ground set in order to optimize an objective function. We address in this article the inverse optimization problem with the k-max function. In other words, we attempt to perturb the weights of elements in the ground set at...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Yugoslav Journal of Operations Research Ročník 33; číslo 2; s. 309 - 322
Hlavní autoři: Nhan, Tran, Nguyen, Kien, Hung, Nguyen, Toan, Nguyen
Médium: Journal Article
Jazyk:angličtina
Vydáno: University of Belgrade 2023
Témata:
ISSN:0354-0243, 1820-743X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Classical combinatorial optimization concerns finding a feasible subset of a ground set in order to optimize an objective function. We address in this article the inverse optimization problem with the k-max function. In other words, we attempt to perturb the weights of elements in the ground set at minimum total cost to make a predetermined subset optimal in the fashion of the k-max objective with respect to the perturbed weights. We first show that the problem is in general NP-hard. Regarding the case of independent feasible subsets, a combinatorial O(n2 log n) time algorithm is developed, where n is the number of elements in E. Special cases with improved complexity are also discussed.
ISSN:0354-0243
1820-743X
DOI:10.2298/YJOR220516037N