The inverse k-max combinatorial optimization problem
Classical combinatorial optimization concerns finding a feasible subset of a ground set in order to optimize an objective function. We address in this article the inverse optimization problem with the k-max function. In other words, we attempt to perturb the weights of elements in the ground set at...
Uloženo v:
| Vydáno v: | Yugoslav Journal of Operations Research Ročník 33; číslo 2; s. 309 - 322 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
University of Belgrade
2023
|
| Témata: | |
| ISSN: | 0354-0243, 1820-743X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Classical combinatorial optimization concerns finding a feasible subset of a ground set in order to optimize an objective function. We address in this article the inverse optimization problem with the k-max function. In other words, we attempt to perturb the weights of elements in the ground set at minimum total cost to make a predetermined subset optimal in the fashion of the k-max objective with respect to the perturbed weights. We first show that the problem is in general NP-hard. Regarding the case of independent feasible subsets, a combinatorial O(n2 log n) time algorithm is developed, where n is the number of elements in E. Special cases with improved complexity are also discussed. |
|---|---|
| ISSN: | 0354-0243 1820-743X |
| DOI: | 10.2298/YJOR220516037N |