Exact $L^2$-Distance from the Limit for QuickSort Key Comparisons (Extended Abstract)

Using a recursive approach, we obtain a simple exact expression for the $L^2$-distance from the limit in the classical limit theorem of Régnier (1989) for the number of key comparisons required by $\texttt{QuickSort}$. A previous study by Fill and Janson (2002) using a similar approach found that th...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Discrete mathematics and theoretical computer science Ročník DMTCS Proceedings vol. AQ,...; číslo Proceedings; s. 339 - 348
Hlavní autori: Bindjeme, Patrick, fill, james Allen
Médium: Journal Article Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: DMTCS 01.01.2012
Discrete Mathematics and Theoretical Computer Science
Discrete Mathematics & Theoretical Computer Science
Edícia:DMTCS Proceedings
Predmet:
ISSN:1365-8050, 1462-7264, 1365-8050
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Using a recursive approach, we obtain a simple exact expression for the $L^2$-distance from the limit in the classical limit theorem of Régnier (1989) for the number of key comparisons required by $\texttt{QuickSort}$. A previous study by Fill and Janson (2002) using a similar approach found that the $d_2$-distance is of order between $n^{-1} \log{n}$ and $n^{-1/2}$, and another by Neininger and Ruschendorf (2002) found that the Zolotarev $\zeta _3$-distance is of exact order $n^{-1} \log{n}$. Our expression reveals that the $L^2$-distance is asymptotically equivalent to $(2 n^{-1} \ln{n})^{1/2}$.
ISSN:1365-8050
1462-7264
1365-8050
DOI:10.46298/dmtcs.3003