A Learning Factory Implementation with Industry, Teaching and Research Perspectives

In the last decade, Industry 4.0 has resulted in widespread change in how manufacturing operates and, as a consequence, the skills set that a graduating engineer is required to display. This rapid change has resulted in challenges for educational institutions at third level as mechanical and manufac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Procedia computer science Jg. 253; S. 1093 - 1102
Hauptverfasser: Quinn, William, Ahearn, Aaron, Buckley, Killian, Casotti, Alberto, Ozturk, Cemalettin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 2025
Schlagworte:
ISSN:1877-0509, 1877-0509
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In the last decade, Industry 4.0 has resulted in widespread change in how manufacturing operates and, as a consequence, the skills set that a graduating engineer is required to display. This rapid change has resulted in challenges for educational institutions at third level as mechanical and manufacturing engineering has now become a interdisciplinary profession requiring not only traditional skills but also skills in information technology, computer science, among others. The challenge in an educational setting is to develop a space where various disciplines can work together, both educators and students in an industrially relevant space. For this reason, a learning factory has been developed in the Munster Technological University with that purpose in mind. Following up on previous work, this paper presents achievements in educational, industrial interaction and research projects. The learning factory has permitted the development of masters level modules, provide training for local industry and also research in the area of machine learning, digital twin, and autonomous flexible manufacturing systems, projects which are summarised in this paper. The paper ends with a discussion of the future direction of the learning factory with the objective of sustainable growth.
AbstractList In the last decade, Industry 4.0 has resulted in widespread change in how manufacturing operates and, as a consequence, the skills set that a graduating engineer is required to display. This rapid change has resulted in challenges for educational institutions at third level as mechanical and manufacturing engineering has now become a interdisciplinary profession requiring not only traditional skills but also skills in information technology, computer science, among others. The challenge in an educational setting is to develop a space where various disciplines can work together, both educators and students in an industrially relevant space. For this reason, a learning factory has been developed in the Munster Technological University with that purpose in mind. Following up on previous work, this paper presents achievements in educational, industrial interaction and research projects. The learning factory has permitted the development of masters level modules, provide training for local industry and also research in the area of machine learning, digital twin, and autonomous flexible manufacturing systems, projects which are summarised in this paper. The paper ends with a discussion of the future direction of the learning factory with the objective of sustainable growth.
Author Ozturk, Cemalettin
Ahearn, Aaron
Casotti, Alberto
Buckley, Killian
Quinn, William
Author_xml – sequence: 1
  givenname: William
  surname: Quinn
  fullname: Quinn, William
  email: william.quinn@mtu.ie
  organization: School of Mechanical, Electrical and Process Engineering, Munster Technological University, Cork, Ireland
– sequence: 2
  givenname: Aaron
  surname: Ahearn
  fullname: Ahearn, Aaron
  organization: School of Mechanical, Electrical and Process Engineering, Munster Technological University, Cork, Ireland
– sequence: 3
  givenname: Killian
  surname: Buckley
  fullname: Buckley, Killian
  organization: School of Mechanical, Electrical and Process Engineering, Munster Technological University, Cork, Ireland
– sequence: 4
  givenname: Alberto
  surname: Casotti
  fullname: Casotti, Alberto
  organization: School of Mechanical, Electrical and Process Engineering, Munster Technological University, Cork, Ireland
– sequence: 5
  givenname: Cemalettin
  surname: Ozturk
  fullname: Ozturk, Cemalettin
  organization: School of Mechanical, Electrical and Process Engineering, Munster Technological University, Cork, Ireland
BookMark eNp9kMFOAjEQQBuDiYh8gZd-gLu2XUu3Bw-EiJKQaBTPTbedSgl0N-2K4e8t4sGTc5mZZN5k5l2iQWgDIHRNSUkJndxuyi62JpWMMF4SWlJBz9CQ1kIUhBM5-FNfoHFKG5KjqmtJxRC9TfESdAw-fOC5Nn0bD3ix67awg9Dr3rcBf_l-jRfBfqY-Hm7wCrRZH8d1sPgVUqbNGr9ATB2Y3u8hXaFzp7cJxr95hN7nD6vZU7F8flzMpsvCMMppIZicMO6kJDa3RgrCwQlnGya5c5ZUsrZ3DRO8NnVtiebEVZpry5uqkUzKaoSq014T25QiONVFv9PxoChRRzVqo37UqKMaRajKajJ1f6Ign7b3EFUyHoIB62N-QNnW_8t_AzM4b84
Cites_doi 10.1016/j.promfg.2020.04.105
10.1016/j.promfg.2020.04.069
10.1109/UEMCON53757.2021.9666556
10.1088/1757-899X/844/1/012024
10.1109/ICIRCA48905.2020.9183342
10.1109/ECTI-CON54298.2022.9795561
10.1016/j.procir.2019.03.002
10.1016/j.promfg.2017.09.039
10.1016/j.promfg.2019.03.019
10.1016/j.promfg.2017.04.023
10.1080/0951192X.2015.1033017
10.1016/j.procir.2016.06.051
10.1109/ICIT45562.2020.9067188
10.1080/00207543.2021.1956675
10.1016/j.procir.2015.02.187
10.1007/978-3-642-35950-7_16828-1
10.1016/j.compind.2020.103261
10.1016/j.ifacol.2022.09.471
10.1109/CVPR42600.2020.01079
10.1016/j.promfg.2020.04.066
10.1177/09504222221100343
10.1109/NITC48475.2019.9114507
10.1109/MELECON53508.2022.9843084
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procs.2025.01.171
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 1102
ExternalDocumentID 10_1016_j_procs_2025_01_171
S1877050925001796
GroupedDBID --K
0R~
1B1
457
5VS
6I.
71M
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
AAYWO
ABMAC
ABWVN
ACGFS
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADNMO
ADVLN
AEUPX
AEXQZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
9DU
AAYXX
CITATION
~HD
ID FETCH-LOGICAL-c2151-729625f990d151c9705ef7fdb295ffd0398d4b2758c88d0a50f3a5ad5b3b92993
ISSN 1877-0509
IngestDate Thu Nov 27 01:01:44 EST 2025
Sat Aug 09 17:31:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Distributed Wireless Networked Control Systems
Energy Efficient Manufacturing
Learning Factory
Digital Twin
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2151-729625f990d151c9705ef7fdb295ffd0398d4b2758c88d0a50f3a5ad5b3b92993
OpenAccessLink https://dx.doi.org/10.1016/j.procs.2025.01.171
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_procs_2025_01_171
elsevier_sciencedirect_doi_10_1016_j_procs_2025_01_171
PublicationCentury 2000
PublicationDate 2025
2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025
PublicationDecade 2020
PublicationTitle Procedia computer science
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Abele, E., 2016. Learning Factory. Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 1–5. URL
McShane, J., Meehan, K., Furey, E., McAfee, M., 2021. Classifying plastic waste on river surfaces utilising cnn and tensorflow, in: 2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), IEEE. pp. 0475–0481.
SimPy, 2023. python-snap7 wrapper. URL
Andersen, A.L., Brunoe, T.D., Nielsen, K., 2019. Engineering education in changeable and reconfigurable manufacturing: Using problem-based learning in a learning factory environment. Procedia CIRP 81, 7–12.
Gateway, 2023. Gateway (ngr-30-3). URL
Zhang, W., Cai, W., Min, J., Fleischer, J., Ehrmann, C., Prinz, C., Kreimeier, D., 2020. 5G and AI technology application in the AMTC learning factory, in: Procedia Manufacturing, Elsevier B.V. pp. 66–71.
Louw, L., Deacon, Q., 2020. Teaching industrie 4.0 technologies in a learning factory through problem-based learning: Case study of a semi-automated robotic cell design. Procedia Manufacturing 45, 265–270.
Quinn, W., Cionca, V., Witheephanich, K., Ozturk, C., 2022. A learning factory framework: Challenges and solutions for an irish university*. IFAC-PapersOnLine 55, 631–636. doi
Kushal, M., BV, K.K., MJ, C.K., Pappa, M., 2020. Id card detection with facial recognition using tensorflow and opencv, in: 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA), IEEE. pp. 742–746.
Tisch, M., Hertle, C., Abele, E., Metternich, J., Tenberg, R., 2016. Learning factory design: a competency-oriented approach integrating three design levels. International Journal of Computer Integrated Manufacturing 29, 1355–1375.
Tan, M., Pang, R., Le, Q.V., 2020. Efficientdet: Scalable and efficient object detection, in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 10781–10790.
IFM, 2023. Vse002/vse100 software. URL
Zancul, E., Martins, H.O., Lopes, F.P., da Silva Neto, F.A., 2020. Machine vision applications in a learning factory. Procedia Manufacturing 45, 516–521.
Sanchez, S., Romero, H., Morales, A., 2020. A review: Comparison of performance metrics of pretrained models for object detection using the tensorflow framework, in: IOP Conference Series: Materials Science and Engineering, IOP Publishing. p. 012024.
Wijesinghe, L., Kulasekera, D., Ilmini, W., 2019. An intelligent approach to segmentation and classification of common skin diseases in sri lanka, in: 2019 National Information Technology Conference (NITC), IEEE. pp. 47–52.
Abele, E., Bauerdick, C.J., Strobel, N., Panten, N., 2016. Eta learning factory: A holistic concept for teaching energy efficiency in production. Procedia CIRP 54, 83–88.
ISA, 2023. Beyond the pyramid: Using isa95 for industry 4.0 and smart manufacturing. URL
Fernández-Miranda, S.S., Marcos, M., Peralta, M., Aguayo, F., 2017. The challenge of integrating industry 4.0 in the degree of mechanical engineering. Procedia Manufacturing 13, 1229–1236. URL
Masood, T., Sonntag, P., 2020. Industry 4.0: Adoption challenges and benefits for smes. Computers in industry 121, 103261.
Boonkong, A., Hormdee, D., Sonsilphong, S., Khampitak, K., 2022. Surgical instrument detection for laparoscopic surgery using deep learning, in: 2022 19th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), IEEE. pp. 1–4.
Episensor, 2023. Wireless 3-phase electricity monitor (zem-63). URL
Azangoo, M., Blech, J.O., Atmojo, U.D., 2020. Towards formal monitoring of workpieces in agile manufacturing, in: Proceedings of the IEEE International Conference on Industrial Technology, Institute of Electrical and Electronics Engineers Inc.. pp. 334–339.
distfit, 2023. distfit probability density fitting of univariate distributions for random variables. URL
Bellucci, M., Chiurco, A., Cimino, A., Ferro, D., Longo, F., Padovano, A., 2022. Learning factories: a review of state of the art and development of a morphological model for an industrial engineering education 4.0, in: 2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON), pp. 260–265. doi
10th IFAC Conference on Manufacturing Modelling, Management and Control MIM 2022.
Simons, S., Abé, P., Neser, S., 2017. Learning in the autfab–the fully automated industrie 4.0 learning factory of the university of applied sciences darmstadt. Procedia Manufacturing 9, 81–88.
MORI, D., 2023. distfit probability density fitting of univariate distributions for random variables. URL
.
Rai, R., Tiwari, M.K., Ivanov, D., Dolgui, A., 2021. Machine learning in manufacturing and industry 4.0 applications. International Journal of Production Research 59, 4773–4778.
python snap7, 2023. Simpy: Simulation framework in python. URL
manufacturing Engineering Society International Conference 2017, MESIC 2017, 28-30 June 2017, Vigo (Pontevedra), Spain.
Salvador, R., Barros, M.V., Barreto, B., Pontes, J., Yoshino, R.T., Piekarski, C.M., de Francisco, A.C., 2023. Challenges and opportunities for problem-based learning in higher education: Lessons from a cross-program industry 4.0 case. Industry and Higher Education 37, 3–21. URL: https://doi.org/10.1177/09504222221100343, doi:10.1177/09504222221100343, arXiv
Singh, I., Centea, D., Elbestawi, M., 2019. Iot, iiot and cyber-physical systems integration in the sept learning factory. Procedia Manufacturing 31, 116–122.
Abele, E., Metternich, J., Tisch, M., Chryssolouris, G., Sihn, W., ElMaraghy, H., Hummel, V., Ranz, F., 2015. Learning factories for research, education, and training. Procedia CIRP 32, 1–6.
doi
10.1016/j.procs.2025.01.171_bib1
10.1016/j.procs.2025.01.171_bib5
10.1016/j.procs.2025.01.171_bib4
10.1016/j.procs.2025.01.171_bib3
10.1016/j.procs.2025.01.171_bib2
10.1016/j.procs.2025.01.171_bib30
10.1016/j.procs.2025.01.171_bib11
10.1016/j.procs.2025.01.171_bib12
10.1016/j.procs.2025.01.171_bib31
10.1016/j.procs.2025.01.171_bib10
10.1016/j.procs.2025.01.171_bib15
10.1016/j.procs.2025.01.171_bib16
10.1016/j.procs.2025.01.171_bib13
10.1016/j.procs.2025.01.171_bib14
10.1016/j.procs.2025.01.171_bib19
10.1016/j.procs.2025.01.171_bib17
10.1016/j.procs.2025.01.171_bib18
10.1016/j.procs.2025.01.171_bib22
10.1016/j.procs.2025.01.171_bib23
10.1016/j.procs.2025.01.171_bib20
10.1016/j.procs.2025.01.171_bib21
10.1016/j.procs.2025.01.171_bib9
10.1016/j.procs.2025.01.171_bib26
10.1016/j.procs.2025.01.171_bib8
10.1016/j.procs.2025.01.171_bib27
10.1016/j.procs.2025.01.171_bib7
10.1016/j.procs.2025.01.171_bib24
10.1016/j.procs.2025.01.171_bib6
10.1016/j.procs.2025.01.171_bib25
10.1016/j.procs.2025.01.171_bib28
10.1016/j.procs.2025.01.171_bib29
References_xml – reference: Louw, L., Deacon, Q., 2020. Teaching industrie 4.0 technologies in a learning factory through problem-based learning: Case study of a semi-automated robotic cell design. Procedia Manufacturing 45, 265–270.
– reference: Simons, S., Abé, P., Neser, S., 2017. Learning in the autfab–the fully automated industrie 4.0 learning factory of the university of applied sciences darmstadt. Procedia Manufacturing 9, 81–88.
– reference: Abele, E., 2016. Learning Factory. Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 1–5. URL:
– reference: Tan, M., Pang, R., Le, Q.V., 2020. Efficientdet: Scalable and efficient object detection, in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 10781–10790.
– reference: Salvador, R., Barros, M.V., Barreto, B., Pontes, J., Yoshino, R.T., Piekarski, C.M., de Francisco, A.C., 2023. Challenges and opportunities for problem-based learning in higher education: Lessons from a cross-program industry 4.0 case. Industry and Higher Education 37, 3–21. URL: https://doi.org/10.1177/09504222221100343, doi:10.1177/09504222221100343, arXiv:
– reference: Singh, I., Centea, D., Elbestawi, M., 2019. Iot, iiot and cyber-physical systems integration in the sept learning factory. Procedia Manufacturing 31, 116–122.
– reference: Andersen, A.L., Brunoe, T.D., Nielsen, K., 2019. Engineering education in changeable and reconfigurable manufacturing: Using problem-based learning in a learning factory environment. Procedia CIRP 81, 7–12.
– reference: Episensor, 2023. Wireless 3-phase electricity monitor (zem-63). URL:
– reference: Zhang, W., Cai, W., Min, J., Fleischer, J., Ehrmann, C., Prinz, C., Kreimeier, D., 2020. 5G and AI technology application in the AMTC learning factory, in: Procedia Manufacturing, Elsevier B.V. pp. 66–71.
– reference: Fernández-Miranda, S.S., Marcos, M., Peralta, M., Aguayo, F., 2017. The challenge of integrating industry 4.0 in the degree of mechanical engineering. Procedia Manufacturing 13, 1229–1236. URL:
– reference: manufacturing Engineering Society International Conference 2017, MESIC 2017, 28-30 June 2017, Vigo (Pontevedra), Spain.
– reference: 10th IFAC Conference on Manufacturing Modelling, Management and Control MIM 2022.
– reference: SimPy, 2023. python-snap7 wrapper. URL:
– reference: Abele, E., Metternich, J., Tisch, M., Chryssolouris, G., Sihn, W., ElMaraghy, H., Hummel, V., Ranz, F., 2015. Learning factories for research, education, and training. Procedia CIRP 32, 1–6.
– reference: ISA, 2023. Beyond the pyramid: Using isa95 for industry 4.0 and smart manufacturing. URL:
– reference: Abele, E., Bauerdick, C.J., Strobel, N., Panten, N., 2016. Eta learning factory: A holistic concept for teaching energy efficiency in production. Procedia CIRP 54, 83–88.
– reference: Boonkong, A., Hormdee, D., Sonsilphong, S., Khampitak, K., 2022. Surgical instrument detection for laparoscopic surgery using deep learning, in: 2022 19th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), IEEE. pp. 1–4.
– reference: Masood, T., Sonntag, P., 2020. Industry 4.0: Adoption challenges and benefits for smes. Computers in industry 121, 103261.
– reference: python snap7, 2023. Simpy: Simulation framework in python. URL:
– reference: Sanchez, S., Romero, H., Morales, A., 2020. A review: Comparison of performance metrics of pretrained models for object detection using the tensorflow framework, in: IOP Conference Series: Materials Science and Engineering, IOP Publishing. p. 012024.
– reference: Zancul, E., Martins, H.O., Lopes, F.P., da Silva Neto, F.A., 2020. Machine vision applications in a learning factory. Procedia Manufacturing 45, 516–521.
– reference: Azangoo, M., Blech, J.O., Atmojo, U.D., 2020. Towards formal monitoring of workpieces in agile manufacturing, in: Proceedings of the IEEE International Conference on Industrial Technology, Institute of Electrical and Electronics Engineers Inc.. pp. 334–339.
– reference: Quinn, W., Cionca, V., Witheephanich, K., Ozturk, C., 2022. A learning factory framework: Challenges and solutions for an irish university*. IFAC-PapersOnLine 55, 631–636. doi:
– reference: Bellucci, M., Chiurco, A., Cimino, A., Ferro, D., Longo, F., Padovano, A., 2022. Learning factories: a review of state of the art and development of a morphological model for an industrial engineering education 4.0, in: 2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON), pp. 260–265. doi:
– reference: Wijesinghe, L., Kulasekera, D., Ilmini, W., 2019. An intelligent approach to segmentation and classification of common skin diseases in sri lanka, in: 2019 National Information Technology Conference (NITC), IEEE. pp. 47–52.
– reference: .
– reference: Gateway, 2023. Gateway (ngr-30-3). URL:
– reference: IFM, 2023. Vse002/vse100 software. URL:
– reference: Rai, R., Tiwari, M.K., Ivanov, D., Dolgui, A., 2021. Machine learning in manufacturing and industry 4.0 applications. International Journal of Production Research 59, 4773–4778.
– reference: McShane, J., Meehan, K., Furey, E., McAfee, M., 2021. Classifying plastic waste on river surfaces utilising cnn and tensorflow, in: 2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), IEEE. pp. 0475–0481.
– reference: Tisch, M., Hertle, C., Abele, E., Metternich, J., Tenberg, R., 2016. Learning factory design: a competency-oriented approach integrating three design levels. International Journal of Computer Integrated Manufacturing 29, 1355–1375.
– reference: MORI, D., 2023. distfit probability density fitting of univariate distributions for random variables. URL:
– reference: distfit, 2023. distfit probability density fitting of univariate distributions for random variables. URL:
– reference: , doi:
– reference: Kushal, M., BV, K.K., MJ, C.K., Pappa, M., 2020. Id card detection with facial recognition using tensorflow and opencv, in: 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA), IEEE. pp. 742–746.
– ident: 10.1016/j.procs.2025.01.171_bib15
  doi: 10.1016/j.promfg.2020.04.105
– ident: 10.1016/j.procs.2025.01.171_bib30
  doi: 10.1016/j.promfg.2020.04.069
– ident: 10.1016/j.procs.2025.01.171_bib17
  doi: 10.1109/UEMCON53757.2021.9666556
– ident: 10.1016/j.procs.2025.01.171_bib22
  doi: 10.1088/1757-899X/844/1/012024
– ident: 10.1016/j.procs.2025.01.171_bib8
– ident: 10.1016/j.procs.2025.01.171_bib14
  doi: 10.1109/ICIRCA48905.2020.9183342
– ident: 10.1016/j.procs.2025.01.171_bib7
  doi: 10.1109/ECTI-CON54298.2022.9795561
– ident: 10.1016/j.procs.2025.01.171_bib4
  doi: 10.1016/j.procir.2019.03.002
– ident: 10.1016/j.procs.2025.01.171_bib10
  doi: 10.1016/j.promfg.2017.09.039
– ident: 10.1016/j.procs.2025.01.171_bib25
  doi: 10.1016/j.promfg.2019.03.019
– ident: 10.1016/j.procs.2025.01.171_bib23
  doi: 10.1016/j.promfg.2017.04.023
– ident: 10.1016/j.procs.2025.01.171_bib28
  doi: 10.1080/0951192X.2015.1033017
– ident: 10.1016/j.procs.2025.01.171_bib11
– ident: 10.1016/j.procs.2025.01.171_bib2
  doi: 10.1016/j.procir.2016.06.051
– ident: 10.1016/j.procs.2025.01.171_bib13
– ident: 10.1016/j.procs.2025.01.171_bib5
  doi: 10.1109/ICIT45562.2020.9067188
– ident: 10.1016/j.procs.2025.01.171_bib20
  doi: 10.1080/00207543.2021.1956675
– ident: 10.1016/j.procs.2025.01.171_bib3
  doi: 10.1016/j.procir.2015.02.187
– ident: 10.1016/j.procs.2025.01.171_bib1
  doi: 10.1007/978-3-642-35950-7_16828-1
– ident: 10.1016/j.procs.2025.01.171_bib9
– ident: 10.1016/j.procs.2025.01.171_bib16
  doi: 10.1016/j.compind.2020.103261
– ident: 10.1016/j.procs.2025.01.171_bib26
– ident: 10.1016/j.procs.2025.01.171_bib24
– ident: 10.1016/j.procs.2025.01.171_bib19
  doi: 10.1016/j.ifacol.2022.09.471
– ident: 10.1016/j.procs.2025.01.171_bib27
  doi: 10.1109/CVPR42600.2020.01079
– ident: 10.1016/j.procs.2025.01.171_bib31
  doi: 10.1016/j.promfg.2020.04.066
– ident: 10.1016/j.procs.2025.01.171_bib21
  doi: 10.1177/09504222221100343
– ident: 10.1016/j.procs.2025.01.171_bib29
  doi: 10.1109/NITC48475.2019.9114507
– ident: 10.1016/j.procs.2025.01.171_bib12
– ident: 10.1016/j.procs.2025.01.171_bib18
– ident: 10.1016/j.procs.2025.01.171_bib6
  doi: 10.1109/MELECON53508.2022.9843084
SSID ssj0000388917
Score 2.3424442
Snippet In the last decade, Industry 4.0 has resulted in widespread change in how manufacturing operates and, as a consequence, the skills set that a graduating...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 1093
SubjectTerms Digital Twin
Distributed Wireless Networked Control Systems
Energy Efficient Manufacturing
Learning Factory
Title A Learning Factory Implementation with Industry, Teaching and Research Perspectives
URI https://dx.doi.org/10.1016/j.procs.2025.01.171
Volume 253
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF4F2gMXSnmIR0F76C2x5Oz6sXu0UKNeQJGSStysje1tE4GDkoDgwg_gVzOzj8QtESqVerHiTTaOZr7MjMcz3xDylUVVpJkWQQL_pCBKOQsklzrgkQL3w4oYtplhE-nlpbi6kv1W69n3wtxfp3UtHh7k7X9VNayBsrF19h3qXn4pLMBrUDocQe1w_CvFZ54z9We7Z4bpPFoK4BvXZWT7tttuZoeR8dCXVNpuRZcJ6a_6MOfNGNb0FgCsTDk6ToRoOze6SqKObVTskjlLUP3ytcOZmq0e_7vHy8bkmA3Ld87VfLqw9QYZcnEtps0khW1ltjmzV30zxsyKNA2QecZ6oTVrzjazmDesK1JfNTw1RC5srRewCYkJ-qACKdmZoWbt2lkvf9BrD_C6eFmIBdE6JRvkA0tjieWBF0-rfB2y5kgzwHn5Qz2JlSkXfHWt9YFOI3gZ7pBtd9dBM4uWz6RV1bvkk5_oQZ2B3yODjHrwUAce-jt4KIKHevB0qIcOBehQDx3ahM4--dH7Njz_HrixG0GB8R8ON4abYg1hSgmnhQTpVDrV5YjJWOsy5FKU0QhkJAohylDFoeYqVmU84iMItiU_IJv1tK4OCU2QUU4rJRPBIwjm4WM6SrqVLHSZKBYekY6XUX5r2VVyX3Y4yY1IcxRpHnZzEOkRSbwcc4dsG_jloPm3Nh7_68YTsoVnNuf2hWwuZnfVKflY3C_G89mZQcgLHNGL2w
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Learning+Factory+Implementation+with+Industry%2C+Teaching+and+Research+Perspectives&rft.jtitle=Procedia+computer+science&rft.au=Quinn%2C+William&rft.au=Ahearn%2C+Aaron&rft.au=Buckley%2C+Killian&rft.au=Casotti%2C+Alberto&rft.date=2025&rft.pub=Elsevier+B.V&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=253&rft.spage=1093&rft.epage=1102&rft_id=info:doi/10.1016%2Fj.procs.2025.01.171&rft.externalDocID=S1877050925001796
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon