Joint String Complexity for Markov Sources

String complexity is defined as the cardinality of a set of all distinct words (factors) of a given string. For two strings, we define $\textit{joint string complexity}$ as the set of words that are common to both strings. We also relax this definition and introduce $\textit{joint semi-complexity}$...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Discrete mathematics and theoretical computer science Ročník DMTCS Proceedings vol. AQ,...; číslo Proceedings; s. 303 - 322
Hlavní autori: Jacquet, Philippe, Szpankowski, Wojciech
Médium: Journal Article Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: DMTCS 01.01.2012
Discrete Mathematics and Theoretical Computer Science
Discrete Mathematics & Theoretical Computer Science
Edícia:DMTCS Proceedings
Predmet:
ISSN:1365-8050, 1462-7264, 1365-8050
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:String complexity is defined as the cardinality of a set of all distinct words (factors) of a given string. For two strings, we define $\textit{joint string complexity}$ as the set of words that are common to both strings. We also relax this definition and introduce $\textit{joint semi-complexity}$ restricted to the common words appearing at least twice in both strings. String complexity finds a number of applications from capturing the richness of a language to finding similarities between two genome sequences. In this paper we analyze joint complexity and joint semi-complexity when both strings are generated by a Markov source. The problem turns out to be quite challenging requiring subtle singularity analysis and saddle point method over infinity many saddle points leading to novel oscillatory phenomena with single and double periodicities.
ISSN:1365-8050
1462-7264
1365-8050
DOI:10.46298/dmtcs.3001