Multi-Period Portfolio Optimization Model with Cone Constraints and Discrete Decisions

This work develops a practical multi-period optimization approach that incorporates real-world constraints, including discrete decisions and conic risk constraints. Expanding upon earlier single-period models, our framework employs a binary scenario tree derived from monthly returns of randomly sele...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of risk and financial management Ročník 18; číslo 4; s. 218
Hlavní autoři: Sağlam, Ümit, Benson, Hande Y.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.04.2025
Témata:
ISSN:1911-8074, 1911-8066, 1911-8074
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This work develops a practical multi-period optimization approach that incorporates real-world constraints, including discrete decisions and conic risk constraints. Expanding upon earlier single-period models, our framework employs a binary scenario tree derived from monthly returns of randomly selected S&P 500 stocks to represent market evolution across multiple periods. The formulation captures essential portfolio constraints, such as transaction fees, sector diversification, and minimum investment thresholds, resulting in a robust and comprehensive optimization approach. To efficiently solve the resulting mixed-integer second-order cone programming (MISOCP) problem, we employ an outer approximation algorithm with a warmstart strategy, which significantly improves solution runtimes and computational efficiency. Numerical experiments demonstrate the model’s effectiveness, showing an average improvement of 10.71% in iteration count and 15.24% in computational time when using the warmstart approach.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1911-8074
1911-8066
1911-8074
DOI:10.3390/jrfm18040218