Parallel embedded processor architecture for FPGA-based image processing using parallel software skeletons
Today, the problem of designing suitable multiprocessor architecture tailored for a target application field raises the need for a fast and efficient multiprocessor system-on-chip (MPSoC) design environment. Additionally, the implementation of image processing applications on MPSoC system will need...
Gespeichert in:
| Veröffentlicht in: | EURASIP journal on advances in signal processing Jg. 2013; H. 1 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cham
Springer International Publishing
01.10.2013
SpringerOpen |
| Schlagworte: | |
| ISSN: | 1687-6180, 1687-6172, 1687-6180 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Today, the problem of designing suitable multiprocessor architecture tailored for a target application field raises the need for a fast and efficient multiprocessor system-on-chip (MPSoC) design environment. Additionally, the implementation of image processing applications on MPSoC system will need to exploit the parallelism and the pipelining in algorithms with the hope of delivering significant reduction in execution times. To take advantage of parallelization on homogeneous MPSoCs and to reduce the programming effort, the proposed design methodology offers more opportunities for accelerating the parallelization of sequential processing image algorithms on pipeline architecture. Our approach provides rapid prototyping tool as a graphic programming environment (CubeGen). Further, it offers a set of parallel software skeletons as a communication library, providing a software abstraction to enable quick implementation of complex image processing applications on field-programmable gate array (FPGA) platform. The design of homogeneous network of communicating processor is presented from the hardware and software specification down to synthesizable hardware description. Then, we extend our approach to support more complex applications by implementing a soft multiprocessor for 'multihypotheses model-driven approach for road recognition’ and show the impact of various configuration choices (hardware and software) to match the specific application needs. Using the images of a real road scene, the performance results of the road recognition algorithm on a Xilinx Virtex-6 FPGA platform not only achieve the desired latency but also further improve the tracking performance which depends mainly on the number of hypotheses. |
|---|---|
| ISSN: | 1687-6180 1687-6172 1687-6180 |
| DOI: | 10.1186/1687-6180-2013-153 |